최근 다수의 문서를 고려해야하는 다중홉(multi-hop) 추론과 같은 복잡한 문제를 해결하기 위해 계층적 그래프 신경망기반 질의응답 시스템이 제안되었다. 계층적 그래프 신경망 기반 질의응답 시스템은 사람의 정확도를 뛰어넘었으나 제한된 문서를 통해 추론을 진행하기 때문에 문서에 충분한 정보가 없을 경우 추론에 실패할 가능성이 존재한다. 따라서 본 논문에서는 위 문제를 해결하기 위해 정보를 재탐색하고 기존의 그래프 정보와 병합하여 기존의 정보와 새로운 정보를 고려하여 재추론 할 수 있는 그래프 병합 기법을 제안한다. 제안하는 그래프 병합 기법은 사전에 정의된 규칙에 의해 수행되며 노드의 병합 및 연결을 통해 새로운 그래프를 도출한다. 새로운 그래프는 그래프 신경망을 통해 추론을 진행하여 기존 정보와 새로운 정보를 고려한 정답을 도출할 수 있다.
The purpose of this study is to analyze the statistical literacy in elementary school students when they beginning inference. Picto-graphs provide statistical information and often data-related arguments they certainly qualify as objects for interpretation, for critical evaluation, and for discussion or communication of the conclusions presented. For research, the inference from pictograph task was designed and statistical literacy standards for evaluating the student's level was presented based on prior studies. Evaluating student's statistical literacy is meaningful in that it can check their current level. To know the student's current level can help them achieve a higher level of performance. The outcomes of this research indicate that pictograph can provide a basis for rich tasks displaying not only student's counting skills but also their appreciation of variation and uncertainty in prediction. Raising statistical thinking by students is an important goal in statistical education, and the experience of informal statistical reasoning can help with formal statistical reasoning that will be learned later. Therefore, the task about the inference from a pictograph, discussions on statistical learning of elementary school children are expected to present meaningful implications for statistical education.
지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.
Abstract Semi-supervised learning is an area in machine learning that employs both labeled and unlabeled data in order to train a model and has the potential to improve prediction performance compared to supervised learning. Graph-based semi-supervised learning has recently come into focus with two phases: graph construction, which converts the input data into a graph, and label inference, which predicts the appropriate labels for unlabeled data using the constructed graph. The inference is based on the smoothness assumption feature of semi-supervised learning. In this study, we propose an enhanced label inference algorithm by incorporating the importance of each vertex. In addition, we prove the convergence of the suggested algorithm and verify its excellence.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.211-214
/
2020
Abstract Meaning Representation(AMR)은 문장의 의미를 그래프 구조로 인코딩하여 표현하는 의미 형식표현으로 문장의 각 노드는 사건이나 개체를 취급하는 개념으로 취급하며 간선들은 이러한 개념들의 관계를 표현한다. AMR 파싱은 주어진 문장으로부터 AMR 그래프를 생성하는 자연어 처리 태스크이다. AMR 그래프의 각 개념은 추상 표현으로 문장 내의 토큰과 명시적으로 정렬되지 않는 어려움이 존재한다. 이러한 문제를 해결하기 위해 별도의 사전 학습된 정렬기를 이용하여 해결하거나 별도의 정렬기 없이 Sequence-to-Sequence 계열의 모델로 입력 문장으로부터 그래프의 노드를 생성하는 방식으로 연구되어 왔다. 본 논문에서는 문장의 입력 시퀀스와 부분 생성 그래프 사이에서 반복 추론을 통해 새로운 노드와 기존 노드와의 관계를 구성하여 점진적으로 그래프를 구성하는 모델을 한국어 AMR 데이터 셋에 적용하여 Smatch 점수 39.8%의 실험 결과를 얻었다.
KIPS Transactions on Software and Data Engineering
/
v.9
no.8
/
pp.243-250
/
2020
Knowledge graph-based question answering not only requires deep understanding of the given natural language questions, but it also needs effective reasoning to find the correct answers on a large knowledge graph. In this paper, we propose a deep neural network model for effective reasoning on a knowledge graph, which can find correct answers to complex questions requiring multi-hop inference. The proposed model makes use of highly expressive bilinear graph neural network (BGNN), which can utilize context information between a pair of neighboring nodes, as well as allows bidirectional feature propagation between each entity node and one of its neighboring nodes on a knowledge graph. Performing experiments with an open-domain knowledge base (Freebase) and two natural-language question answering benchmark datasets(WebQuestionsSP and MetaQA), we demonstrate the effectiveness and performance of the proposed model.
최근 오픈 도메인 자연어 질문 응답 분야에서는 폭넓은 다중 문서들을 토대로 다중 홉 추론과 동시에 서로 다른 수준의 여러 문제들을 한꺼번에 해결해야 하는 다중 작업 질문 응답에 관한 관심이 높다. 본 논문에서는 이러한 다중 홉 추론과 다중 작업을 요구하는 복잡 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 다중 문서들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 뒷받침 문장들, 답변 영역, 응답 유형 등을 동시에 구해야 하는 다중 작업 문제에 관한 답들을 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 긍정적 효과를 입증한다.
Park, JongHee;Shin, Jaehong;Lee, Soo Jin;Ma, Minyoung
Journal of Educational Research in Mathematics
/
v.27
no.1
/
pp.23-49
/
2017
This study examined two current learning models for covariational reasoning(Carlson et al.(2002), Thompson, & Carlson(2017)), applied the models to teaching two $9^{th}$ grade students, and analyzed the results according to the types of graphs(a quantitative graph or qualitative graph). Results showed that the model of Thompson and Carlson(2017) was more useful than that of Carlson et al.(2002) in figuring out the students' levels in their quantitative graphing activities. Applying Carlson et al.(2002)'s model made it possible to classify levels of the students in their qualitative graphs. The results of this study suggest that not only quantitative understanding but also qualitative understanding is important in investigating students' covariational reasoning levels. The model of Thompson and Carlson(2017) reveals more various aspects in exploring students' levels of quantitative understanding, and the model of Carlson et al.(2002) revealing more of qualitative understanding.
The purpose of this study is to investigate middle school students' understanding and development of function graphs. We collected the data from the teaching experiment with two middle school students who had not yet received instruction on linear function in school. The students participated in a 15-day teaching experiment(Steffe, & Thompson, 2000). Each teaching episode lasted one or two hours. The students initially focused on numerical values rather than the overall relationship between the variables in functional situations. This study described meaning, role of and students' responses for the given tasks, which revealed the students' understanding and development of function graphs. Especially we analyzed students' responses based on their methods to solve the tasks, reasoning that derived from those methods, and their solutions. The results indicate that their continuous reasoning played a significant role in their understanding of function graphs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.