• 제목/요약/키워드: 그래프 추론

검색결과 100건 처리시간 0.027초

그래프 신경망 기반 질의응답 시스템에서 그래프 병합을 활용한 재추론 기법 (Re-Inference Method using Graph Merging in Graph Neural Network based Question Answering System)

  • 이필원;김상훈;신용태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.480-482
    • /
    • 2021
  • 최근 다수의 문서를 고려해야하는 다중홉(multi-hop) 추론과 같은 복잡한 문제를 해결하기 위해 계층적 그래프 신경망기반 질의응답 시스템이 제안되었다. 계층적 그래프 신경망 기반 질의응답 시스템은 사람의 정확도를 뛰어넘었으나 제한된 문서를 통해 추론을 진행하기 때문에 문서에 충분한 정보가 없을 경우 추론에 실패할 가능성이 존재한다. 따라서 본 논문에서는 위 문제를 해결하기 위해 정보를 재탐색하고 기존의 그래프 정보와 병합하여 기존의 정보와 새로운 정보를 고려하여 재추론 할 수 있는 그래프 병합 기법을 제안한다. 제안하는 그래프 병합 기법은 사전에 정의된 규칙에 의해 수행되며 노드의 병합 및 연결을 통해 새로운 그래프를 도출한다. 새로운 그래프는 그래프 신경망을 통해 추론을 진행하여 기존 정보와 새로운 정보를 고려한 정답을 도출할 수 있다.

'그림그래프에서 추론하기' 과제에서 나타나는 초등학교 5, 6학년 학생들의 통계적 소양 (Statistical Literacy of Fifth and Sixth Graders in Elementary School about the Beginning Inference from a Pictograph Task)

  • 문은혜;이광호
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제22권3호
    • /
    • pp.149-166
    • /
    • 2019
  • 초등학교 수학에서 자료와 가능성 영역은 통계적 과정에서 요구되는 기초적인 통계적 내용을 학습하여 통계의 기초 소양을 기르는 단원이다. 학생들은 실제 자료에서 정보를 추출하고, 이를 표와 그래프로 정리하여 결론을 통계적으로 추론하며, 합리적인 의사결정을 내리는 과정을 경험한다. 본 연구에서는 '그림그래프에서 추론하기' 과제에 대한 초등학교 5, 6학년 학생들의 통계적 소양을 분석하여 초등학교에서 추론 학습 가능성과 통계적 소양의 관점에서 그림그래프의 교육적 가치를 살펴본다. 학생들의 통계적 사고를 길러주는 것은 통계교육에서 중요한 목표이며, 비형식적인 통계 추론의 경험은 이후 학습할 형식적 통계적 추론에 도움을 줄 수 있다. 따라서 '그림그래프에서 추론하기' 과제에서 나타나는 초등학생들의 통계적 소양에 대한 논의는 학교 통계 교육에 유의미한 시사점을 제시할 것이다.

쌍 선형 그래프 신경망을 이용한 지식 그래프 기반 질문 응답 (Question Answering over Knowledge Graphs Using Bilinear Graph Neural Network)

  • 이상의;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.563-566
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론 (Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing)

  • 전명중;소치승;바트셀렘;김강필;김진;홍진영;박영택
    • 정보과학회 논문지
    • /
    • 제42권8호
    • /
    • pp.998-1009
    • /
    • 2015
  • 근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.

준지도 학습에서 꼭지점 중요도를 고려한 레이블 추론 (A Label Inference Algorithm Considering Vertex Importance in Semi-Supervised Learning)

  • 오병화;양지훈;이현진
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1561-1567
    • /
    • 2015
  • 준지도 학습은 기계 학습의 한 분야로서, 레이블된 데이터와 레이블되지 않은 데이터 모두를 사용하여 모델을 학습함으로써 지도 학습에 비해 예측 정확도를 높일 수 있다. 최근 각광받고 있는 그래프 기반 준지도 학습은 입력 데이터를 그래프의 형태로 변환하는 그래프 구축 단계와 이를 사용하여 레이블되지 않은 데이터의 레이블을 예측하는 레이블 추론 단계로 나뉜다. 이 추론은 준지도 학습에서의 평활도 가정을 기본으로 한다. 본 연구에서는 추가로 각 꼭지점 중요도를 결합함으로써 개선된 레이블 추론 알고리즘을 제안한다. 이와 함께 알고리즘의 수렴성을 증명하고, 또한 실험을 통해 알고리즘의 우수성을 검증하였다.

그래프⇋시퀀스의 반복적 추론을 이용한 한국어 AMR 파싱 (Korean AMR Parsing using Graph⇋Sequence Iterative Inference)

  • 민진우;나승훈;최현수;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.211-214
    • /
    • 2020
  • Abstract Meaning Representation(AMR)은 문장의 의미를 그래프 구조로 인코딩하여 표현하는 의미 형식표현으로 문장의 각 노드는 사건이나 개체를 취급하는 개념으로 취급하며 간선들은 이러한 개념들의 관계를 표현한다. AMR 파싱은 주어진 문장으로부터 AMR 그래프를 생성하는 자연어 처리 태스크이다. AMR 그래프의 각 개념은 추상 표현으로 문장 내의 토큰과 명시적으로 정렬되지 않는 어려움이 존재한다. 이러한 문제를 해결하기 위해 별도의 사전 학습된 정렬기를 이용하여 해결하거나 별도의 정렬기 없이 Sequence-to-Sequence 계열의 모델로 입력 문장으로부터 그래프의 노드를 생성하는 방식으로 연구되어 왔다. 본 논문에서는 문장의 입력 시퀀스와 부분 생성 그래프 사이에서 반복 추론을 통해 새로운 노드와 기존 노드와의 관계를 구성하여 점진적으로 그래프를 구성하는 모델을 한국어 AMR 데이터 셋에 적용하여 Smatch 점수 39.8%의 실험 결과를 얻었다.

  • PDF

다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론 (Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering)

  • 이상의;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.243-250
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

다중 홉 다중 작업 질문 응답을 위한 계층적 그래프 추론 (Hierarchical Graph Reasoning for Multi-hop, Multi-task Question Answering)

  • 이상의;이기호;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.984-987
    • /
    • 2020
  • 최근 오픈 도메인 자연어 질문 응답 분야에서는 폭넓은 다중 문서들을 토대로 다중 홉 추론과 동시에 서로 다른 수준의 여러 문제들을 한꺼번에 해결해야 하는 다중 작업 질문 응답에 관한 관심이 높다. 본 논문에서는 이러한 다중 홉 추론과 다중 작업을 요구하는 복잡 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 다중 문서들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 뒷받침 문장들, 답변 영역, 응답 유형 등을 동시에 구해야 하는 다중 작업 문제에 관한 답들을 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 긍정적 효과를 입증한다.

그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교 (Analyzing Students' Works with Quantitative and Qualitative Graphs Using Two Frameworks of Covariational Reasoning)

  • 박종희;신재홍;이수진;마민영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권1호
    • /
    • pp.23-49
    • /
    • 2017
  • 본 연구는 중학교 3학년 학생 2명을 대상으로 공변 추론 수준에 관련된 두 이론(Carlson et al.(2002), Thompson, & Carlson(2017))을 그래프 유형(양적 그래프, 질적 그래프)에 따라 분석하였다. 이에 대한 연구결과로 양적 그래프 과제에서 Thompson과 Carlson(2017)은 Carlson 외(2002)보다 학생의 수준을 세분화하였으며, 질적 그래프 과제에서 Thompson과 Carlson(2017)은 학생 수준을 범주화하기 어려웠지만, Carlson 외(2002)는 학생의 수준을 자세히 파악할 수 있었다. 이와 같은 연구결과는, 학생들의 공변 추론을 파악하는 데 있어 양에 따른 수치적 접근의 분석뿐만 아니라 두 양의 공변 양상을 비수치적으로 파악하는 질적 접근의 분석도 중요함을 시사하며, 또한 Thompson과 Carlson(2017)이 양에 따른 수치적 접근을 분석하는 데 있어 중요한 방법이며 Carlson외(2002)가 비수치적으로 파악하는 질적 접근을 분석하는 데 있어 중요한 방법임을 시사한다.

중학생들의 함수의 그래프에 대한 이해와 발달 (Middle School Students' Understanding and Development of Function Graphs)

  • 마민영;신재홍;이수진;박종희
    • 대한수학교육학회지:학교수학
    • /
    • 제18권3호
    • /
    • pp.457-478
    • /
    • 2016
  • 본 연구의 목적은 중학생들의 함수의 그래프 개념에 대한 이해와 발달을 탐색하는 것이다. 본 연구를 위해 일차함수를 학습한 경험이 없는 중학생 2명을 대상으로 약 7개월에 걸쳐 교수실험을 진행하였고, 수업을 진행하고 분석하는 과정에서 두 학생 모두 상황을 그래프로 표현하고 그래프를 상황에 적절하게 해석하는 초기 과제에서 두 변량 사이의 함수 관계보다 산술적인 값들에 주안점을 둔다는 것이 드러났다. 이에 본 연구에서는 함수의 그래프에 대한 이해와 발달, 학생간의 차이점이 드러나는 과제에 주목하여 교사가 학생들에게 제시한 과제의 의도 및 역할, 과제에 대한 학생의 반응을 기술하였다. 특히 학생의 반응은 Castillow-Garsow(2012)가 제안한 과제를 해결하는 방식, 그 방식을 이끌어내는 추론, 과제의 해결로 나누어 분석하였다. 그 결과, 함수의 그래프 표현 및 해석에서 양들의 변화와 연속성에 대한 인식의 중요성을 확인하였다.