• Title/Summary/Keyword: 균열저항

Search Result 543, Processing Time 0.03 seconds

Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement (아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정)

  • Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1109-1116
    • /
    • 2016
  • There are various test methods for evaluating the reflective cracking resistance of asphalt concrete pavement. Repeated direct tensile test is cheap and simple compared to the other traditional experimental methods. Determination of failure criteria is needed to apply a repeated direct tensile test. Various methods were used to determine the number of failure of repeated direct tensile test. The number of failure was defined as the time to reach 10% of the initial load, this method can be satisfied with specified tolerance of 10%. When the thickness of specimen is increased to 50 mm from 30 mm, the failure number is increased by 13.6 times. Thus, this result shows that the thickness of pavement is a big influence on the reflective cracking resistance. Reflective cracking resistance of asphalt concrete is decreased according to the increase in opening displacement. The repeated direct tensile test can be used as a reflective cracking resistance factor in pavement design, because it can evaluate the reflective cracking resistance according to the pavement thickness, opening displacement, material properties etc.

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

Effect of Initial Flexural Crack on Resistance to Chloride Penetration into Reinforced Concrete Members (초기 휨균열이 철근콘크리트 부재의 염화물침투저항성에 미치는 영향)

  • Yang, Eun Ik;Jin, Sang Ho;Kim, Myung Yu;Choi, Yoon Suk;Han, Sang Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • In this study, the chloride penetration tests were performed for the initially cracked reinforced concrete members. The chloride diffusion characteristics and the critical crack width are compared, and the properties of self-healing are investigated. According to the test results, the chloride penetration resistance was greatly reduced as the surface crack width increased. When the mineral admixtures are added, the chloride penetration resistance of uncracked specimens were effectively increased, however, in case of the blast furnace slag and fly ash, the cracked specimens showed the more reduced resistance than OPC case, inversely. Also, the critical width was $29{\mu}m$, on average, for immersion test. The crack width with $4{\sim}15{\mu}m$ was restored by self-healing, The parts restored by self-healing were seemed to be visually restored, however, the chloride penetration resistance was not restored, perfectly.

Crack Resistance Behavior Using Digital Image Correlation and Crack Tip Opening Angle on Particulate Reinforced Composite (디지털 화상관련법 및 균열선단열림각도를 이용한 입자강화 복합재료의 균열저항거동)

  • Na, Seong Hyeon;Lee, Jeong Won;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1021-1026
    • /
    • 2016
  • In this study, crack resistance is evaluated by the crack tip opening angle (CTOA) using a wedge splitting test (WST) on a viscoelastic particulate reinforced composite based on an HTPB binder. Generally, CTOA, as a function of crack extension, is used in order to determinate fracture resistance and has a steady state relative angle. Digital image correlation (DIC) is used to measure the crack tip opening displacement (CTOD) and crack extension for the critical crack tip opening angle (CTOAc). In these results, the CTOAc value of a particulate reinforced composite tends to approach a constant angle after a small amount of crack extension. The CTOAc value increases with decreasing temperature, from $50^{\circ}C$ to $-40^{\circ}C$. These CTOAc values may be used to measure fracture mechanics parameters for particulate reinforced composite.

Bridging Effect and Fatigue Crack Growth of Silicon Nitride (질화규소의 피로균열진전과 입자가교효과)

  • 유성근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1203-1208
    • /
    • 1996
  • Crack growth tests on silicon nitride have been made to clarify the crack growth characteristics under static and cyclic loading. Under constant K(K: stress intensity factor) static loading the crack growth rate in silicon nitride decreases with increasing crack extension and is finally arrested. The cack growth resistiance is largely reduced by the application of stress cycling and though the crack growth resistiacne increases with increasing of crack extension the increasing rate is much smaller under cyclic loading than under static loading.

  • PDF

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Static Shear Resistance of Cast-In-Place Anchors in Cracked Concrete (균열콘크리트에 매입된 선설치앵커의 정적 전단하중에 대한 저항강도)

  • Park, Yong Myung;Ju, Ho Jung;Kim, Dong Hyun;Kang, Moon Ki;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.87-97
    • /
    • 2015
  • In this study, an experimental study was performed to evaluate the concrete breakout strength of cast-in-place(CIP) anchors in cracked concrete under static shear loading. The CIP anchors involved in this study were 30mm in diameter with an edge distance of 150mm and an embedment length of 240mm. The experiment was carried out for two specimens in uncracked concrete and three specimens in cracked concrete orthogonal and parallel to the direction of shear loading, respectively. Compared to the uncracked concrete specimen, cracked specimen orthogonal to the direction of shear loading showed no reduction in the concrete breakout strength and that parallel to the load direction about 91% strength which corresponds to 84% of uncracked concrete strength defined in ACI 318-11. Therefore, the experimental results showed smaller decrease in the shear resistance of CIP anchors in cracked concrete than that specified in ACI code which account for 71% strength of uncracked concrete in cracked concrete.

Static Shear Strength of Cast-in Anchors with Stirrup Reinforcement (스터럽 보강 선설치 앵커의 정적 전단하중에 대한 저항 강도)

  • Park, Yong Myung;Jo, Sung Hoon;Kim, Tae Hyung;Kang, Choong Hyun;Kim, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • An experimental study was conducted to evaluate the static shear strength of stirrup-reinforced cast-in anchors. The test parameters considered herein are an existence of front bearing bar and concrete crack. M36 anchor was used with an edge distance of 180mm. HD-10 bars were used for all reinforcing bars and the stirrups were placed with 100mm spacing. The shear resistance increased by 16% when the front bearing bar was installed. Meanwhile, the resistance reduced only 5% in the cracked concrete compared with the uncracked concrete. The test results showed that ACI 318 and ETAG 001 specifications could estimate the shear strength of stirrup-reinforced anchors conservatively and a rational method was proposed. A consideration on the fracture strength of stirrup-reinforced anchor is also given.

A Study on the Crack Prevention of the Floor Surface Finishing Mortar adding Chemical Admixtures in Apartment Houses (혼화제를 사용한 공동주택 바닥마감 모르타르의 균열저감에 관한 연구)

  • Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1541-1548
    • /
    • 2015
  • In this study, strengthening methods of floor surface finishing mortar are investigated to prevent the cracks using crack inhibitor agents, water reducer agent and resin. As a results, The number of crack and compressive strength of the specimen containing water reducer agent or resin had more effective than other specimens containing inhibitor agents at 7 days. And the highest compressive strength specimen showed the relatively no crack, but the lowest compressive strength specimen showed a lot of crack. Therefore the relationship between the crack growth and the compressive strength had proportional connection. A base on the mock-up test, long-term monitoring of the on-site applied to mixing design type3 showed the few cracks.

Shear Strength of Hairpin Reinforced Cast-In-Place Anchors by Static and Seismic Qualification Tests (헤어핀 보강 선설치앵커의 정적 및 지진모의실험에 의한 전단 저항강도 평가)

  • Kim, Dong Hyun;Park, Yong Myung;Kim, Tae Hyung;Jo, Sung Hoon;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2015
  • This study evaluated the static and dynamic shear strength of cast-in-place anchors reinforced with hairpin bars in uncracked and cracked concrete. The anchors 30mm in diameter reinforced with D10 hairpin bar were designed with an edge distance of 150mm and an embedment depth of 240mm. The cracked specimens consisted of the orthogonal and parallel cracks to the direction of shear loads, respectively. The dynamic strength was evaluated using seismic qualification tests based on the ACI 355.2 standard. The shear strength of the hairpin reinforced anchor was hardly correlated to the concrete cracks and the dynamic strength was similar to its static shear strength. Finally, a consideration on the design strength of hairpin reinforced anchors was presented.