DOI QR코드

DOI QR Code

Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement

아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정

  • Received : 2016.07.12
  • Accepted : 2016.09.13
  • Published : 2016.12.01

Abstract

There are various test methods for evaluating the reflective cracking resistance of asphalt concrete pavement. Repeated direct tensile test is cheap and simple compared to the other traditional experimental methods. Determination of failure criteria is needed to apply a repeated direct tensile test. Various methods were used to determine the number of failure of repeated direct tensile test. The number of failure was defined as the time to reach 10% of the initial load, this method can be satisfied with specified tolerance of 10%. When the thickness of specimen is increased to 50 mm from 30 mm, the failure number is increased by 13.6 times. Thus, this result shows that the thickness of pavement is a big influence on the reflective cracking resistance. Reflective cracking resistance of asphalt concrete is decreased according to the increase in opening displacement. The repeated direct tensile test can be used as a reflective cracking resistance factor in pavement design, because it can evaluate the reflective cracking resistance according to the pavement thickness, opening displacement, material properties etc.

아스팔트 콘크리트 포장의 반사균열 저항성을 평가하기 위해 다양한 방법이 적용되고 있다. 반복직접인장시험은 기존실험에 비해 저렴하고 간편하게 아스팔트 콘크리트 포장의 반사균열 저항성을 평가할 수 있는 장점이 있다. 국내에 반복직접인장시험을 도입하기 위해서는 파괴기준의 결정이 필요하다. 반복직접인장시험의 파괴횟수를 결정하기 위해 다양한 방법을 검토한 결과 초기하중의 10%일 때를 파괴시점으로 산정할 경우 10% 이내의 반복횟수 편차를 나타내었다. 아스팔트 콘크리트의 두께가 30 mm에서 50 mm로 증가할 경우 파괴횟수는 13.6배 증가하여 포장두께가 반사균열 저항성에 큰 영향을 미치는 것을 알 수 있었다. 또한 재하변형의 크기가 클수록 반사균열의 진전속도가 증가하는 것으로 나타났다. 반복직접인장시험은 포장 두께, 변형크기, 재료적 특성에 따라 반사균열저항성을 정량적으로 평가할 수 있기 때문에 포장설계시 반사균열 저항성 평가 방법으로 적용 가능한 것으로 나타났다.

Keywords

References

  1. Alneami, A. H. and Almudadi, T. H. (2011). "A laboratory tool used to evaluate the reflective cracking in overlay asphalt pavement." Al-Rafidain Engineering, Vol. 19, No. 3 pp. 11-25.
  2. Available at: www.roadseal.co.kr
  3. Germann, F. P. and Lytton, R. L. (1979). "Methodology for predicting the reflection cracking life of asphalt concrete overlays." Research report FHWA/TX-79/09+207-5, College Station, Texas, March.
  4. Han, S. K., Cha, S. M. and Cho, Y. H. (2003). "The current state of reduction methods of reflection crack in Korea." Pavement Engineers, Vol. 5, No. 1, pp. 22-27 (in Korean).
  5. Kim, C. W. (2015). "Old pavement improvement countermeasure at jungbu & youngdong line." Seminars for technical development of asphalt pavement, pp.2-13, Korea Expressway Corporation (in Korean).
  6. Kim, N. S., Jo, S. H. and Lee, B. L. (2016). "Research of development of binder for high performance reactive asphalt pavement." The Korea Society of Disaster Information (in Korean).
  7. Ministry of Land, Infrastructure and Transport (MOLIT) (2014). Yearbook of road statistics (in Korean).
  8. Rigo, J. M. (1993). "General introduction, main conclusions of the 1989 conference on reflection cracking in pavements, and future prospects." Proceedings of the 2nd International RILEM Conference on Reflection Cracking in Pavements, Liege University, Belgium, Edited by Rigo, J. M., et al., pp. 1-20.
  9. Suh, Y. C., Lee, Y. M., Kim, J. H. and Cho, N. H. (2012). "Behavior and resistance to the reflection crack of composite pavement with waterproof membrane." Journal of Highway Engineering, Vol. 14, No. 2, pp 1-10, Korean Society of Road Engineers (in Korean).
  10. Zhou, F. and Scullion, T. (2003). "Upgraded overlay tester and its application to characterize reflection cracking resistance of asphalt mixtures." Report No. FHWA/TX-04/0-4467-1, Texas Transportation Institute.
  11. Zhou, F. and Scullion, T. (2005). "Overlay tester- A rapid performance related crack resistance test." Report FHWA/TX-05/0-4467-2, Texas Transportation Institute.