• 제목/요약/키워드: 규회석

검색결과 57건 처리시간 0.019초

산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향 (Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions)

  • 류경원;홍석진;최상훈
    • 자원환경지질
    • /
    • 제53권1호
    • /
    • pp.1-9
    • /
    • 2020
  • 이산화탄소 고정화 및 탄산화 반응에는 칼슘(Ca)과 마그네슘(Mg)과 같은 알칼리토류 금속을 함유하고 있는 사문석(serpentine, Mg3Si2O5(OH)4) 규회석(wollastonite, CaSiO3), 감람석(olivine, Mg2SiO4)과 같은 칼슘/마그네슘 실리케이트 광물(Ca/Mg-silicate mineral)들이 주로 이용되어 왔다. 특히 사문석은 탄산화가 가능한 자연물질 중 자연계 내에 풍부한 매장량을 갖고 있으며, 우수한 반응성 때문에 광물탄산화에 가장 적절한 출발물질로 인식되어 있다. 따라서 본 연구는 사문석을 출발물질로 사용하여 산성 용액 내에서 이산화탄소의 압력이 탄산화 효율에 미치는 영향력을 확인하고자 하였다. 탄산화 실험 조건은 황산용액 0.3~1 M, 반응온도 100℃ 및 150℃ 그리고 이산화탄소의 부분압력 0~3 MPa이며, 탄산화법은 수정된 직접탄산화법(modified direct method)으로 실시하였다. 또한 탄산화 효율을 높이고자 liquid pump로 NaOH 용액을 주입하여 pH를 13으로 조절하였다. 탄산화율은 황산의 농도 및 반응온도에 비례하여 증가하였으며, 3 MPa의 이화탄소를 주입한 조건에서의 탄산화율이 이산화탄소를 첨가하지 않은 조건의 탄산화율보다 높았다. 반응결과 황산용액 1 M과 이산화탄소 부분압 3 MPa, 반응온도 150℃에서 용출 및 탄산화 실험 후 약 85%의 상당히 높은 탄산화율이 분석되었다. 따라서 산성용액에서 이산화탄소의 압력이 사문석 내의 Mg 용출에 영향을 미치는 것으로 확인되었다. Mg의 용해속도는 Si의 용해속도보다 높아 반응 후 사문석의 Mg : Si의 비가 약 1.5에서 0.1미만으로 급속하게 감소하여, 사문석의 구조 내에 불완전한 Si 사면체 층 골격구조(Mg-depleted skeletal phase)가 분석되었다.

괴산 성도 연-아연 광상의 산출광물과 생성환경 (Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan)

  • 안성열;신동복
    • 자원환경지질
    • /
    • 제50권5호
    • /
    • pp.325-340
    • /
    • 2017
  • 성도 연-아연광상은 옥천층군 화전리층의 석회암을 교대한 스카른광체와 모암내 열극을 충진한 열수맥상광체로 구분된다. 스카른광물은 헤덴버자이트(hedenbergite) 계열의 휘석이 대부분이며, 그로슐라(grossular)와 안드라다이트(andradite)가 진동누대구조를 보이는 석류석, 그리고 소량의 규회석, 투각섬석, 녹염석 등이 산출되어 환원환경에서 정출된 것으로 보인다. 스카른광체에서는 섬아연석 및 방연석이 우세하고 황철석, 자류철석, 황동석이 소량 수반되며, 열수맥상광체에서는 유비철석, 섬아연석, 황동석 및 황철석과 더불어 방연석, 자연비스무스 및 황석석(stannite)이 소량 수반된다. 스카른광체에서 암회색 섬아연석의 FeS 함량은 평균 17.4 mole%, 적갈색 섬아연석은 3.6 mole%이고, 열수맥상광체에서는 10.3 mole%를 나타낸다. 이들을 국내 주요 금속광상의 FeS-MnS-CdS 함량비와 비교한 결과 스카른광체는 연-아연, 열수맥상광체는 금-은 광상 영역에 도시된다. 열수맥상광체에서 산출되는 유비철석의 As 함량은 초기 31.93~33.00 at.%에서 중기 29.58~30.21 at.%로 가면서 점차 감소하며, 이에 따른 광화온도와 황분압은 초기 $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm.$와 중기 $330{\sim}364^{\circ}C$, <$10^{-8}atm.$에 해당한다. 섬아연석과 공생하는 황석석의 Fe와 Zn 조성비를 이용한 광물상 평형온도는 $236{\sim}254^{\circ}C$의 범위를 보인다. 스카른광체 황화광물의 황동위원소 조성은 5.4~7.2‰, 열수맥상광체는 5.4~8.4‰로서 화성기원과 유사하거나 다소 높은 값을 나타내어 광상을 형성시킨 황이 대체로 마그마에서 유래되었으나 일부 모암의 영향을 받았음을 시사한다. 그러나, 스카른광체와 열수맥상광체에서의 황동위원소평형온도가 각각 $549^{\circ}C$$487^{\circ}C$로서 상평형온도 보다 현저히 높게 나타나고 있어서 이들이 동위원소적으로 충분한 평형을 이루지 못한 것으로 추정된다.

수도묘(水稻苗)에 시용(施用)한 규산(珪酸)과 인산(燐酸)의 영향(影響)에 관(關)한 연구(硏究) (Studies on the Effects of Silicate and Phosphate Application on the Growth of Rice Seedling)

  • 김문규
    • 한국토양비료학회지
    • /
    • 제3권1호
    • /
    • pp.17-21
    • /
    • 1970
  • 답(畓)에 시용(施用)한 규산(珪酸)과 인산(燐酸)의 영향(影響)을 조사(調査) 연구(硏究)하기 위해서 직경(直徑) 15cm의 Petri dish에 200grs의 풍건세토(風乾細土)와 3 수준(水準)의 규산(珪酸) 인산(燐酸) 처리(處理)를 하고 질소(窒素)와 가리(加里)는 동일량(同一量)을 매회(每回) 처리(處理)하는 9개구(個區)를 설치(設置) 농림(農林) 25호(號)를 100립(粒) 씩 최아(催芽) 낙종(落種)하여 5회(回) 계속(繼續) 재배(栽培)하고 식물체분석(植物體分析) 및 토양분석(土壤分析)을 실시(實施)한 성적(成績)을 분석(分析) 평가(評價)한 결과(結果)는 다음과 같다. 1. 인산(燐酸)의 흡수량(吸收量)이 많을수록 수도묘(水稻苗)의 건물중(乾物重)은 현저히 증대(增大)하였으나 규산(珪酸)의 흡수량(吸收量) 증대(增大)로 건물중(乾物重)은 감소(減少)하는 경향(傾向)을 보였다. 2. 시험(試驗) 후(後) 토양(土壤)의 유효 인산함량(燐酸含量)이 많은 것일수록 식물체중(植物體中)의 규산함량(珪酸含量) 및 흡수량(吸收量)은 감소(減少)하는 경향(傾向)이며 $SiO_2/P_2O_5$의 비율(比率)은 현저히 감소(減少)되었다. 3. 규회석(珪灰石) 시용(施用)으로 시험(試驗) 후(後) 토양중(土壤中)의 유효 규산(珪酸), 석회(石灰) 함량(含量)과 식물체(植物體) 중(中)의 규산(珪酸) 함량(含量), 규산(珪酸) 흡수량(吸收量) $SiO_2/P_2O_5$의 비율(比率)은 현저히 증대(增大)되었으며 4. 토양중(土壤中)의 유효규산함량 자체(自體)의 증대(增大) 보다도 석회함량(石灰含量)의 증대(增大)가 식물체(植物體) 중(中) 규산함량(珪酸含量) 규산(珪酸) 흡수량(吸收量) 및 $SiO_2/P_2O_5$ 비(比)의 증대(增大)와 더욱 높은 상관(相關)을 보였다. 5. 식물체중(植物體中)의 $SiO_2/P_2O_5$의 비율(比率)을 조절(調節)하기 위해서는 토양중(土壤中)의 $SiO_2/P_2O_5$의 비율(比率)을 조절(調節)하므로서 가능(可能)하며 6. 식물체중(植物體中)의 $SiO_2/P_2O_5$의 비율(比率)(y)은 시험(試驗) 후(後) 토양중(土壤中)의 유효 $SiO_2/P_2O_5$의 비(比)(x)와 $y=0.665+1.420x-0.0825x^2$의 회귀관계(回歸關係)가 있으며 적중율(適中率)($r^2$)은 82%였다.

  • PDF

습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究) (Effect of amendments and their causes of rice yield increase in ill drained paddy soil)

  • 박천서;송재하;김영섭;이춘영;최영순
    • 한국토양비료학회지
    • /
    • 제4권1호
    • /
    • pp.13-19
    • /
    • 1971
  • 수도생육초기(水稻生育初期)에 흡수조해물질(吸收阻害物質)의 생성집적(生成集積)이 우려(憂慮)되는 전형적(典型的)인 습답(濕畓)의 개량방법(改良方法)을 확립(確立)시키기 위(爲)해서 적지(適地)를 선정(選定) 석회질물질(石灰質物質), 무류산근비료(無硫酸根肥料), 붕소(硼素) 생고등(生藁等)을 첨가처리(添加處理) 한 포장시험(圃場試驗)을 실시(實施)하고 시기별식물체시료(時期別植物體試料)의 채취분석(採取分析)을 실시(實施)하여 그 결과(結果)들을 평가검토(評價檢討)한 결과(結果) 대략(大約) 다음과 같이 요약(要約)할수 있었다. (1) 습답(濕畓)에서는 소석회(消石灰), 규회석(珪灰石)과 같은 석회질물질(石灰質物質)의 첨가(添加) 붕(硼) 사등(砂等)과 같은 미생물(微生物)의 활동억제물질(活動抑制物質), 무류산근비료(無硫酸根肥料)와 같은 유해물질생성원(有害物質生成源)이 없는 물질(物質)의 시용(施用)으로 현저(顯著)한 정조수양증수(精租收量增收)를 기(期)할수있다. (2) 습답(濕畓)에 있어서 작물학적(作物學的)인 감수원인(減收原因)은 주당수수(株當穗數) 수당입수(穗當粒數), 1000입중등(粒重等)이 감소(減少)되는것이다. (3) 습답(濕畓)에서의 식물영양학적(植物營養學的)인 감수원인(減收原因)은 전생육기간(全生育期間)을 통(通)한 질소흡수조해(窒素吸收阻害)와 유수형성기(幼穗形成) 이후(以後)의 인발흡목조해(燐醱吸牧阻害), 수확기고중(收穫期藁中)의 고토(苦土), 석회(石灰) 규산함량(硅酸含量)의 감소(減少)때문이다. (4) 습답(濕畓)에서의 각종성분(各種成分)의 수도체중함량감소원인(水稻體中含量減少原因)은 다음과 같은 관찰사실(觀察事實)로부터 흡수조해물질(吸收阻害物質)의 생성집적(生成集積)으로 인(因)한 근계(根系)의 피해(被害)때문이라고 추정(推定)된다. (가) 흡수조해물질(吸收阻害物質)의 생성집적(生成集積)이 최고(最高)에 이르는 유수형성기(幼穗形成期)에 있어서 인산(燐酸)의 식물체당함량(植物體當含量)은 인산무처리구(燐酸無處理區)보다 인산시용구(燐酸施用區)에서 적었으며 석회질물질시용(石灰質物質施用)으로 중화(中和)된 구(區)에서는 훨씬 많았다. (나) 생고시용구(生藁施用區)에서 유수형성기(幼穗形成期) 식물체중가리함량(植物體中加里含量)은 필경 생고분해과정(生藁分解過程)에서 생성(生成)된 흡수조해물질(吸收阻害物質)때문에 매우 낮었으나 수확기(收穫期)에는 높았으며 필경 피해근(被害根)에 의(依)한 소극적(消極的) 비대사흡수(非代謝吸收) 때문이다. (다) 유기물(有機物)을 분해(分解)하는 미생물(微生物)의 작용(作用)을 조해(阻害)하는 것으로 알려진 붕소(硼素)의 효과(效果)가 현저(顯著)하였다. (라) 유화수소(硫化水素)와 같은 흡수조해물질생성원(吸收阻害物質生成源)이 없는 무류산근비료처리(無硫酸根肥料處理)의 효과(效果)가 현저(顯著)하였다. (마) 흡수조해물질(吸收阻害物質)의 생성집적량(生成集積量)이 최고(最高)에 이르며 근(根)의 활력(活力)이 최저(最低)에 이르는 유수형성기전후(幼穗形成期前後)에 결정(決定)되는 수량구성요소(收量構成要素)들이 모두 감소(減少)된다.

  • PDF

연화(蓮花)-울진광산지대(蔚珍鑛山地帶) 스카른연(鉛)·아연광상(亞鉛鑛床)의 구조적(構造的) 및 성분적(成分的) 특징(特徵) 기이(其二) : 제2연화광산(第二蓮花鑛山) (Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part II : The Yeonhwa II Mine)

  • 윤석귀
    • 자원환경지질
    • /
    • 제12권3호
    • /
    • pp.147-176
    • /
    • 1979
  • 제2연산광산(第二蓮山鑛山)은 그 스카른 유화연(硫化鉛) 아연광상(亞鉛鑛床)의 체계적(體系的)인 분포상태(分布狀態)로 특징(特徵)지어졌으며 광상(鑛床)은 중경사(中傾斜)로 기울어진 판상내지(板狀乃至) 렌즈상광체군(狀鑛體群)으로 대표(代表)되며 동북동(東北東)으로 주향(走向)하는 풍촌석회암(豊村石灰岩) 및 묘봉점판암(猫峯粘板岩)의 충상단층면(衝上斷層面)에 따라 관입(貫入)한 석영(石英)몬조니반암(班岩)의 암상(岩床) 및 이로부터 분기(分技)한 암맥(岩脈)의 접촉대(接觸帶)에 따라 발달(發達)되었다. 이들 광상(鑛床)은 모암(母岩) 및 화성암(火成岩)과의 관계(關係)에 따라 (1) 관입암상(貫入岩床)의 하반광체군(下盤鑛體群)(월곡하반광체(月谷下盤鑛體)) (2) 동(同) 상반광체군(上盤鑛體群)(월곡상반광체(月谷上盤鑛體)) (3) 암맥접촉대(岩脈接觸帶)와 이로부터 석회암층간(石灰岩層間)에 따라 연장(延長)된 광체군(鑛體群)(선곡광체(仙谷鑛體))으로 삼대분(三大分)된다. 광상(鑛床)은 석회규산염(石灰硅酸鹽)(스카른광물(鑛物))과 유화광물(硫化鑛物)로 구성(構成)돼 있는데 유화광석(硫化鑛石)으로는 섬아연석(閃亞鉛石)을 주(主)로 하고 방연석(方鉛石) 및 황동석(黃銅石)이 포함(包含)되며 유화맥석(硫化脈石)으로는 자유철석(磁硫鐵石)을 주(主)로 한다. 농촌석회암(農村石灰岩)과 석영(石英)몬조니암(岩)과의 월곡하반접촉대(月谷下盤接觸帶)에 발달(發達)된 외성(外成)및 내성(內成)스카른광물(鑛物)은 -120갱(坑)에서 다음과 같은 대칭대반분포(對稱帶狀分布)를 보인다. 즉 외성(外成)스카른의 중심(中心)에 자류석-석영대(石英帶), 이 대(帶)의 양측(兩側)바같으로 휘석(輝石)-광석대(鑛石帶), 그리고 더욱 외측(外側)으로 묘봉점판암(猫峯粘板岩)쪽으로는 함녹염석(含綠簾石) 녹니석(綠泥石) 혼펠스대(帶)와 화성암(火成岩)쪽으로는 녹염석(綠簾石)을 주(主)로 하는 내성(內成)스카른대(帶)가 배열(配列)한다. 이는 스카른형성(形成)에 있어서의 두가지 효과(效果) 즉 (1) 원암(原岩)의 차이(差異)(퇴적암(堆積岩)과 화성암(火成岩)) 및 (2) 스카른분대(分帶)는 이들 원암(原岩)의 교대변질과정(交代變質過程)에 있어서 내측대(內測帶)로부 터 외측대(外側帶)로 향(向)한 점진적(漸進的) 이동(移動)이 있었음을 보여주고 있다. 전자선분석(電子線分析)에 의(依)하면 휘석(輝石)은 회철휘석질(灰鐵輝石質)이고 중심대(中心帶)로 부터 외측대(外側帶)를 향(向)하여 철분(鐵分)이 증가(增加)하는데 반(反)하여 자류석의 철분(鐵分)은 증가(增加)함으로서 휘석(輝石)과 자류석에 흡수(吸收)된 철분(鐵分)의 양(量)이 서로 반비례(反比例)함을 보여준다. 준휘석류(準輝石類)에 硅灰石(규회석)이 안나타나고 대신(代身) 파이록시망가이트, 장마휘석, 버스타마이트가 우세한 점(點)은 스카른용액(溶液)의 높은 함(含)망간성(性)을 말하며 자류석이 흔히 형석(螢石)에 의(依)해 대표(交代)되었음은 할로겐의 활동(活動)이 매우 강(强)했음을 가르친다. 유화아연(硫化亞鉛)은 스카른대중(帶中) 특히 휘석대(輝石帶)에 친근(親近)하게 수반(隨伴)되며 이는 회철휘석(灰鐵輝石)이 유화아연(硫化亞鉛)의 침전(沈澱)을 촉진(促進)하는 환원환경(還元環境)을 조성(造成)하는데 기인(起因)된 것으로 해석(解析)된다. 지질구조적(地質構造的)으로 개방(開放)된 환경(環境)에 있었던 월곡상반(月谷上盤)및 선곡광화대(仙谷鑛化帶)에 있어서는 금속품위(金屬品位)의 변동(變動)이 심(甚)한데 반(反)해 두개의 관입암상(貫入岩床)사이에 폐쇄(閉鎖)되었던 월곡하반접촉대내(月谷下盤接觸帶內)에서는 금속품위(金屬品位)의 분포(分布)가 비교적(比較的) 일정(-定)하다.

  • PDF

인도네시아 동부자바 빠찌딴(Pacitan) 광화대 열수 맥상 광상의 성인 연구 (Genetic Environments of Hydrothermal Vein Deposits in the Pacitan District, East Java, Indonesia)

  • 최선규;소칠섭;최상훈;한진균
    • 자원환경지질
    • /
    • 제28권2호
    • /
    • pp.109-121
    • /
    • 1995
  • 인도네시아 빠찌딴 광화대 동-아연 광상은 금 또는 연 광화작용을 수반하여 동부자바 Southern Mountain zone내 제3기 퇴적암류와 화산암류의 열극을 충진한 열수 석영 백상광체로 까시한(Kasihan), 점퐁(Jompong), 금뽈(Gempol) 지역에 밀집 분포한다. 주 광화시기의 광석광물로는 황철석, 황동석, 섬아연석, 방연석 등이 각 지역별로 특징적인 광석광물들과 공생관계로 보이며 산출한다. 즉 까시한 지역의 경우 초기 공생광물군으로써 황철석 자류철석 철함유량이 높은(약 20 mole % FeS) 섬아연석과 Au 함량이 매우높은 (91.4 to 94.0 atomic % Au) 에렉트럼 및 (Cu-)Pb-Bi계 유염광물 등이 산출하며, 점퐁지역은 황철석, 유비철석(29.5~30.3 atomic % As), 섬아연석 등이 공생관계를 보여주며 산출된다. 반면, 금뽈지역의 경우 황철석, 자철석, 적철석 등의 초기 산출이 특징적이다. 광석광물의 침전은 0.8~10.1 wt. % NaCl 상당염농도를 갖는 광화유체로부터 약 $350^{\circ}C$에서 약 $200^{\circ}C$에 걸쳐 진행되었으며, 까시한 및 점퐁지역의 경우 초기 광화유체의 비등현상과 이에 수반된 냉각 회석 작용에 기인한 광액 진화에 의하여, 금뽈지역의 경우 천수의 유입에 의한 냉각 희석작용이 우세하게 진행된 광액 진화에 기인하여 야기되었다. 광화유체의 비등현상 및 유체포유물 연구결과에 근거한 빠찌딴 광화대 주 광화시기의 압력조건은 약 (${\geq}95{\sim}255$ bars로, 까시한($\approx$ 140~255 bar) $\rightarrow$ 점퐁 ($\approx$ 120~170 bar) $\approx$ 금뽈 (${\geq}95$ bar)의 순으로 광화대내 지역별 상대적인 광화심도 차이가 확인된다. 광물공생관계를 이용한 열역학적 연구결과, 온도감소에 따른 유황분압의 변화와 산소분압 조건이 각 지역별로 상이함은 광화대내 각 지역별 열수계에서 상기 광화심도에 관련한 천수의 역할(water/rock 비등)차이에 기인된 결과로 해석된다. 유체내 산소 및 수소안정동위원소 연구결과, 이들 동위원소 값이 광화작용의 진행과 함께 점차 감소함은 상대적으로 낮은 water/rock 비 값은 갖는 환경하에서 동위원소 교환반응을 이뤄 평형상태에 이른 광화초기 열수계내에 광화작용의 진행과 함께 산화상태의 차갑고 동위원소적 교환반응이 적게 이뤄진 천수의 혼입이 점증하였음을 지시하며, 각 지역별 동위원소비 값의 차이는 광화심도에 관련된 water/rock비 및 동위원소 교환반응차 등에 의한 결과로 사료된다.

  • PDF

산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석 (Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics)

  • 김창성;최선규;김규보;강정극;김상태;이종현;장재호
    • 자원환경지질
    • /
    • 제52권1호
    • /
    • pp.107-118
    • /
    • 2019
  • 태백산분지 북익부 고품위 석회석의 생성은 크게 동생적(syngenetic)과 후생적(epigenetic) 관점으로 나뉘어 있으며, 산소-탄소 안정동위원소 비 특성을 이용하여 이들의 생성환경을 고찰하였다. 북익부의 4개 광산(GMI, 정선, 백운, 백광)과 남익부의 상동(오미아)광산, 그리고, 삼척지역의 쌍용동해광산을 대상으로 하였으며, 이들과의 비교를 위해 정선지역 대기층 노두시료를 포함하였으며, 이들을 색상에 따라 암회색, 회색, 담회색, 백색으로 구분하였다. 산소 안정동위원소 비는 4.5 ~ 21.6 ‰의 넓은 범위의 변화를 보이지만, 탄소 안정동위원소 비는 -1.1 ~ 0.8 ‰ (방해석 맥 제외)로 매우 좁은 범위를 보여, 열수의 작용이 크지 않았음을 지시한다. 또한, 광산별, 색상별 산소-탄소 안정동위원소 비의 분포범위의 차이는 없으며, 주변 노두에서 채취된 탄산염암과 유사한 범위를 보이는 것으로 보인다. 이와 같은 결과는 고품위 석회석의 생성에 있어서 열수의 영향은 거의 없었다는 것을 지시한다. 산소 안정동위원소 비 값은 암석의 색상변화(백색화)보다는 조직의 변화와 관련되는데, 산소 안정동위원소 비 15 ‰ 전후를 기준으로 탄산염암의 산상을 구분할 수 있다. 이보다 높은 경우 괴상 또는 층리가 잘 보존된 특징을 보이는 반면, 낮은 경우 하나의 시료 내에서 두 가지 이상의 색상이 나타나고 있으며, 층리는 교란되거나 거의 소멸하여 흔적만 확인된다. 두 가지 이상의 색상이 나타나는 경우 밝은 부분이 어두운 부분에 비해 현저히 낮은 산소 안정동위원소 비를 보이는 경우가 다수 관찰되며, 이는 열수와의 반응에 의한 현상으로 해석된다. 다만, 이와 같은 현상은 소규모로 나타나고 있으며, 광상 전체적인 고품위 석회석의 생성에 대한 해석으로는 적당하지 않다. 특히, 재결정화한 백색의 탄산염암에서 높은 산소 안정동위원소 비 값을 보이는 것은 이 지역 탄산염암의 재결정화에 열수의 작용이 매우 적었음을 지시하며, 주변 마그마에 의한 열적 영향만을 받은 결과로 해석된다. 또한, 고품위 석회석광상 내 광체의 분포가 수평으로 연속적이며, 고품위 석회석 상하 주변에 백운석이 층상으로 협재되는 등의 산상을 고려할 때, 연구지역 고품위 석회석의 생성은 동생적(syngenetic) 해석이 보다 더 타당할 것으로 판단된다. 따라서, 태백산분지 전반적으로 순차층서적 관점에 의한 퇴적상의 해석이 필요할 것으로 사료되며, 이는 추가적인 고품위 석회석 광체의 확보에 매우 중요한 요소가 될 것이다.