• Title/Summary/Keyword: 굽힘파

Search Result 48, Processing Time 0.044 seconds

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation (굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단)

  • Park, Jeongwon;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.

Measurement of Mechanical Properties of Pyeongyeong Chime Stone (편경 제작용 경석 표본의 역학적 물성 측정)

  • Park, Sang-Ha;Noh, Jung-Uk;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • In this paper, we have measured the fundamental properties of chime stone for Pyeongyeong. The properties are measured by wave propagation in the stone without destroying the stones, the measured properties are the chime stone density, natural frequencies of extensional wave and bending wave, and Young's modulus which is calculated by the measured properties. To find a value for Young's modulus, the fundamental frequencies which are obtained through spectrum analysis of extensional wave and bending wave are used. We calculated Young's modulus of chime stone by theoretical study and measurement on extensional wave and bending wave of the beam. As a result, we obtained Young's modulus by the fundamental frequencies of extensional wave and bending wave which deviation is within 2%.

The analysis of tire's flexural characteristic using wave propagation (Wave Propagation 을 이용한 타이어 굽힘파 분석)

  • Hwang, S.W.;Han, J.H.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1237-1240
    • /
    • 2007
  • Tire noise is a major noise source at high speeds. One of the noise source is controlled by pattern and structure. Pattern noise is effected by the shape of tread. And the bending stiffness of tire is influenced to the resonance of tire‘s belt. But in high frequency region, FEA is not appropriated with application. So this paper discusses about wave propagation of tire. There has been much effort to verify the flexural wave velocity with structure design specification.

  • PDF

Transmission of Vibration Energy in Box-like Structures (격자형 구조물내의 진동에너지 전파)

  • 김현실;강현주;김재승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.126-131
    • /
    • 1994
  • 본 연구에서는 굽힘파(bending wave)의 전달만 고려하였는데 실제로는 보 및 비틀림 모드도 존재하나 고주파수 대역에서는 굽힘모드가 지배적이며 소음의 발생도 굽힘모드에 의해 주로 발생하므로 보 및 비틀림모드의 생략이 큰 오차를 가져오지는 않는다. 테스트 모델에 대해 실험을 수행하여 결과를 비교하였다. 또한 구조물의 고주파수 진동소음 해석방법으로 널리 쓰이는 통계적 에너지 해석법(SEA)을 이용한 결과와 비교하였다.

  • PDF

An Improved AE Source Location by Wavelet Transform De-noising Technique (웨이블릿 변환 노이즈 제거에 의한 AE 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang;Joo, Young-Chan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.490-500
    • /
    • 2000
  • A new technique for the source location of acoustic emission (AE) in plates whose thichness are close to or thinner than the wavelength has been studied by introducing wavelet transform de-noising technique. The detected AE signals were pre-processed using wavelet transform to be decomposed into the low-frequency, high-amplitude flexural components and the high-frequency, low-amplitude extensional components. If the wavelet transform de-noising was employed, we could successfully filter out the extensional wave component, one of the critical errors of source location in plates by arrival time difference method. The accuracy of source location appeared to be significantly improved and independent of the setting of gain and threshold, plate thickness, sensor-to-sensor distance, and the relative position of source to sensors. Since the method utilizes the flexural component of relatively high amplitude, it could be applied to very large, thin-walled structures in practice.

  • PDF

Acoustic Emission Source Location of Fiberboard (섬유판에서 음향방출원의 위치표정)

  • 박익근;김용권;윤종학;노승남;서성원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • 음향방출 신호를 이용하여 목재 섬유판(fiberboards)의 위치표정의 유용성 유무를 실험적으로 검증하였다 위치표정의 정확도를 향상하기 위해 신호처리 방법중의 하나인 웨이블릿 변환 디노이징 기법을 활용하여 저주파수인 대칭모드(굽힘파)를 활용하고, 고주파수인 비대칭모드(팽창파)를 제거하여 신호를 재구성함으로써 섬유관의 위치표정시 문턱값 통과방법을 사용할 때 발생하는 도달시간차를 최소화 할 수 있음을 확인하였다. 디노이징 기법을 활용한 섬유판의 위치 표정과 굽힘강도에 대한 사상총수를 기초로 하여 목재 구조물 및 문화재의 건전성을 평가 할 수 있을 것으로 기대된다.

  • PDF

Study on Analysis of Evanescent Waves Generating the Strong End Axial Vibration of a Finite Cylindrical Shell (유한 원통셸의 큰 끝단 종진동을 발생시키는 감쇠파에 대한 분석 연구)

  • Kil, Hyun-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.361-367
    • /
    • 2011
  • Propagating waves (flexural, longitudinal and shear waves) travelling with constant amplitudes and evanescent waves decaying exponentially are generated on a cylindrical shell. Evanescent waves are generally generated in the vicinity of an vibration excitation point and near ends of the shell. But the evanescent waves can generates strong axial vibration at the ends of the cylindrical shell. The strong end axial vibration due to those evanescent waves has been observed in an author's previous paper dealing with measurements of the in-plane axial vibration of a finite cylindrical shell. In this paper the strong end axial vibration due to the evanescent waves has been theoretically analyzed. In order to analyze the vibration of the cylindrical shell, wave propagation approach has been implemented. Comparison between theoretical and experimental results for the axial vibration of the shell showed that the strong evanescent wave can be generated due to mode conversion (conversion from flexural wave to evanescent wave) at the ends of cylindrical shell. It also showed that the evanescent wave can generate the strong axial vibration near the ends of the cylindrical shell and that it can have effect even on 1/3 of the total length of the shell.

Bending Waves Propagating in a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보에서 전파하는 굽힘 탄성파)

  • Kim, Jin-O;Mun, Byeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1923-1930
    • /
    • 2000
  • A bar with periodically nonuniform material properties is selected as a one-dimensional model of a flat-panel speaker. This paper describes a theoretical approach to the bending waves propagating i n the nonuniform bar. The phase speed of the wave is obtained using perturbation techniques for small amplitude, sinusoidal modulation of the flexural rigidity and mass density. It is shown that the wave speed is decreased due to the nonuniformity of the material properties by the amount proportional to the square of the modulation amplitude. The resonance occurring when the wavelength is half of the period of the material properties is analyzed by the method of multiple scales. It is also shown that the wave speed at the resonance mode is decreased by the amount proportional to the modulation amplitude but the wave of this mode does not propagate far enough due to attenuation.