군집 분석은 데이터의 속성을 분석하여 서로 유사한 패턴을 가진 데이터를 묶는 방법이다. 군집 분석은 많은 응용 분야에서 쓰이고 있으나, 수행된 군집 분석 결과가 과연 정확한 결과이고 의미 있는 결과인지를 평가하는데 어려움이 있다. 본 논문에서는 군집이 형성된 데이터를 분석하여 군집 분석 결과를 평가하는 상대적 군집 평가 방법을 제안한다. 본 논문에서는 상대적 군집 평가 방법의 인덱스를 정의하고 형성된 군집 분석 결과에 적용해 최적의 군집, 의미 있는 군집을 찾을 수 있음을 보인다. 또한 실험을 통해 제안한 인덱스의 적합성을 보이며, 제안한 인덱스가 기존의 인덱스에 비해 최적의 군집, 의미 있는 군집을더 잘 찾을 수 있음을 보인다.
K-평균 군집분석이 가지는 두 가지 근본적인 어려움은 사전에 미리 군집 수를 정해야 하는 문제와 초기 군집중심에 따라 결과가 달라질 수 있는 문제이다. 본 연구에서는 이러한 문제를 해결하기 위한 자동화 K-평균 군집분석 절차를 제안하고, R을 이용하여 구현한 결과를 제공한다. 자동화 K-평균 군집분석에서 제안된 절차는 처음 단계로서 계층적 군집분석을 행한 후 이를 이용하여 군집 수와 초기 군집수를 자동으로 정하고, 다음 단계로 이 결과를 이용하여 K-평균 군집분석을 수행하는 방법을 택하였다. 처음 단계에서 이용된 계층적 군집분석 방법으로는 Ward의 군집분석을 한 후에 Mojena의 규칙을 이용하여 군집 수를 정하는 방법을 택하거나, 모형근거 군집분석방법을 수행한 후에 BIC 값을 이용하여 군집 수를 정하는 방법을 이용하였다. 제안된 자동화 K-평균 군집절차에는 대량자료의 분석에도 용이하게 이용될 수 있도록 반복된 표본추출 방법을 이용하여 군집 수 및 군집 중심을 구하는 절차를 포함하였다. 구현된 R 프로그램은 www.knou.ac.kr/ sskim/autokmeans.r에서 제공하고 있다.
인터넷 비즈니스나 전자상거래와 연관되어 고객관계관리(Customer Relationship management :CRM)에 대한 관심이 널리 확산됨으로 해서 군집분석에 대한 관심이 한층 높아졌고, 다양한 군집분석 프로그램이 시장에 소개되어 지고 있다. 그런, 군집분석 프로그램들은 다른 데이터 분석 기법과는 달리 그들의 성능을 측정하기가 매우 힘들다. 본 논문에서는 이미 알려져 있는 군집구조를 지닌 인위적 데이터를 사용하여 다양한 군집분석 프로그램을 평가할 수 있는 하나의 방법론을 제시하고, 그 방법론의 유용성을 보여 주기 위해 현재 많이 사용하고 있는 네 가지의 군집분석 프로그램을 본 논문에서 제시한 방법론을 사용하여 평가하는데 그 주요 목적을 두고 있다. 본 연구에서 두 가지의 반복적 군집분석 프로그램(Convergent Cluster Analysis:CCA, SPSS의 Clementine), 전통적인 단순군집 프로그램(One-Shot Clustering Program: Howard-Harris 프로그램), 그리고 IBM의 데이터 마이닝 기법 중 하나인 데모그래픽 군집분석 프로그램의 성능을 비교한 결과, 군집분석을 위하여 다른 군집분석 방법 보다 좀 더 지능적으로 초기치를 생성한 CCA방법이 가장 우월한 성능을 보여 주었다.
전통적으로 많이 사용하는 군집분석의 방법들은 개체간의 거리를 고려하여 이들을 분류해 내는 것이며, 따라서 거리 측정 방법에 따라 여러 형태의 군집분석 방법이 나타나게 된다. 어떤 방법을 적용하던 간에 그 결과는 고정된 수치로써 나타난다. 다차원 자료의 구조파악이 몇 개의 수치로 나타나게 되면 어쩔 수 없이 정보의 손실이 발생하게 된다. 이를 보완하기 위해 시각적 매체를 동원하여 다차원 자료의 구조를 파악하는 연구가 있었으며, 이를 시각적 군집분석이라고 명명하고 있다. 본 연구에서는 시각적 군집분석에 대한 기본적 개념과 이를 위한 통계 도형의 활용, 구현방법 등에 대해 살펴보기로 한다.
Journal of the Korean Data and Information Science Society
/
제28권2호
/
pp.395-406
/
2017
전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.
라벨 없이 진행되는 비지도 학습 중 하나인 군집분석은 자료에 어떤 그룹이 내포되어 있는지 사전 지식이 없을 경우에 군집을 발굴하고, 군집 간의 특성 차이와 군집 안에서의 유사성을 분석하고자 할 때 유용한 방법이다. 기본적인 군집분석 중 하나인 K-means 방법은 변수의 개수가 많아질 때 잘 동작하지 않을 수 있으며, 군집에 대한 해석도 쉽지 않은 문제가 있다. 따라서 고차원 자료의 경우 주성분 분석과 같은 차원 축소 방법을 사용하여 변수의 개수를 줄인 후에 K-means 군집분석을 행하는 Tandem 군집분석이 제안되었다. 하지만 차원 축소 방법을 이용해서 찾아낸 축소 차원이 반드시 군집에 대한 구조를 잘 반영할 것이라는 보장은 없다. 특히 군집의 구조와는 상관없는 변수들의 분산 또는 공분산이 클 때, 주성분 분석을 통한 차원 축소는 오히려 군집의 구조를 가릴 수 있다. 이에 따라 군집분석과 차원 축소를 동시에 진행하는 방법들이 제안되어 왔다. 그 중에서도 본 연구에서는 De Soete와 Carroll (1994)이 제안한 방법론을 확률적인 모형으로 바꿔 군집분석을 진행하는 확률적 reduced K-means를 제안한다. 모의실험 결과 차원 축소를 배제한 군집분석과 Tandem 군집분석보다 더 좋은 군집을 형성함을 알 수 있었고 군집 당 표본 크기에 비해 변수의 개수가 많은 자료에서 기존의 비 확률적 reduced K-means 군집분석에 비해 우수한 성능을 확인했다. 보스턴 자료에서는 다른 군집분석 방법론보다 명확한 군집이 형성됨을 확인했다.
본 연구의 목적은 자연휴양림의 방문한 이용객들의 방문동기를 통한 군집분석을 통하여 이용객을 분류하고 그에 따른 행동의도간의 차이를 검증하여 그에 따른 세분화된 이용객들의 차별화된 마케팅 및 경영전략을 수립하는데 그 목적이 있다고 할 수 있다. 이의 측정을 위하여 1년 이내에 자연휴양림을 이용한 적이 있는 방문객들을 대상으로 자연휴양림 방문동기에 대한 요인 분석을 실시한 후 군집분석을 실시하여 군집을 분류하였으며, 분류된 군집을 인구통계학적 특성과의 교차분석을 실시하여 군집의 유형화를 실시하였다. 유형화된 군집을 통하여 만족도, 재방문 및 추천의도에 대한 차이검정을 실시하였다. 분석결과 방문동기에 대한 요인분석 결과 3개의 요인으로 분류되었으며, 이를 통해 계층적 군집분석과 K-means군집분석을 통하여 2개의 군집을 도출하였으며, 2개의 군집을 다시 교차분석을 통하여 군집의 유형화를 실시하여 미혼의 100만원 미만의 군집과 기혼의 200~300만원의 군집 집단으로 유형화를 실시하였다. 이 군집을 자연휴양림 방문 후 행동의도간의 차이분석을 실시하였으며, 그 결과 전반적으로 만족, 즐거운 시간을 보냄, 방문은 현명한 선택, 재방문의도, 추천의도 모두 유의한 차이가 있는 것으로 나타났다. 군집 2인 기혼의 200~300만원의 집단에 더 높은 행동의도를 보이고 있는 것으로 나타나 차별화된 마케팅 전략이 필요시 되며, 또한 자연휴양림 공익적 성격을 고려하여 각 집단에 대하여 모두 소구할 수 있는 서설 및 서비스의 개발이 요구 된다.
군집분석을 위한 알고리즘은 매우 많다. 이러한 군집분석 방법들이 개체들을 어떻게 여러 개의 군집으로 나누는 지를 서로 비교하기 위해서는 나누어지는 군집들이 얼마나 동일한가를 알 수 있는 동의 측도가 필요하다. 우리가 고려하여야 할 군집분석 방법들이 많아질수록 덩달아 동의 측도들 값도 많아지게 된다. 그래서 복수 개의 군집분석 방법들과 대응되는 동의 측도값들을 한 눈에 확인할 수 있는 도구가 필요하다. 본 논문을 통하여 군집분석 방법들과 대응되는 동의 측도값들을 한 눈에 확인할 수 있는 그래픽도구들을 제안하고자 한다.
데이터베이스에 내재된 패턴이나 관계를 묘사한 것만으로도 의사결정에 필요한 정보를 제공할 수 있는데 이 데이터들의 변수들을 비슷한 특징을 가지는 소그룹으로 나누어 패턴을 찾는 것을 군집분석이라 한다. 이러한 군집 분석에는 분리군집방법과 계층적군집방법이 있는데, 재할당이 가능한 분리군집방법의 여러 알고리즘에 대해 비교해보자. 분리군집알고리즘에는 중심을 평균으로 하는 k-평균 알고리즘과, 중심을 메도이드로하는 PAM, CLARA, CLARANS 알고리즘이 있다. 이러한 알고리즘에 대한 이론과, 장단점을 설명하고, 분산과 중심들간의 평균 거리로 비교해 본다.
이 연구의 목적은 공공도서관 그룹화를 위해 적합한 군집분석 모델을 파악하고 그 특징을 분석하는데 있다. 국가도서관통계시스템의 공공도서관 통계 데이터를 사용하였으며, 군집분석 기법의 3가지 모델을 적용하였다. 공공도서관 규모를 기준으로 군집분석을 실시한 결과 크게 2가지 군집으로 구분되었으며, 군집의 크기는 크게 한쪽으로 치우쳤다. 그룹화 모델로 도서관 규모를 기준으로 삼으면, 계층적 군집분석의 와드측정법과 k-평균군집분석 모델이 적합하였다. 공공도서관 그룹화 연구 결과에 대한 시사점은 다음과 같다. 첫째, 통계 데이터 외에 도서관 서비스 관련 다양한 데이터 수집이 진행되어야 한다. 둘째, 분석 대상이 되는 데이터 세트에 적합한 분석 모델이 적용되어야 한다. 셋째, 도서관 서비스 향상을 위해 군집분석 기법의 다양한 분야 적용 가능성에 대한 적극적인 연구가 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.