• Title/Summary/Keyword: 국지예보모델

Search Result 51, Processing Time 0.031 seconds

A study on prediction method for flood risk using LENS and flood risk matrix (국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구)

  • Choi, Cheonkyu;Kim, Kyungtak;Choi, Yunseok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.657-668
    • /
    • 2022
  • With the occurrence of localized heavy rain while river flow has increased, both flow and rainfall cause riverside flood damages. As the degree of damage varies according to the level of social and economic impact, it is required to secure sufficient forecast lead time for flood response in areas with high population and asset density. In this study, the author established a flood risk matrix using ensemble rainfall runoff modeling and evaluated its applicability in order to increase the damage reduction effect by securing the time required for flood response. The flood risk matrix constructs the flood damage impact level (X-axis) using flood damage data and predicts the likelihood of flood occurrence (Y-axis) according to the result of ensemble rainfall runoff modeling using LENS rainfall data and as well as probabilistic forecasting. Therefore, the author introduced a method for determining the impact level of flood damage using historical flood damage data and quantitative flood damage assessment methods. It was compared with the existing flood warning data and the damage situation at the flood warning points in the Taehwa River Basin and the Hyeongsan River Basin in the Nakdong River Region. As a result, the analysis showed that it was possible to predict the time and degree of flood risk from up to three days in advance. Hence, it will be helpful for damage reduction activities by securing the lead time for flood response.

Verification of Planetary Boundary Layer Height for Local Data Assimilation and Prediction System (LDAPS) Using the Winter Season Intensive Observation Data during ICE-POP 2018 (ICE-POP 2018기간 동계집중관측자료를 활용한 국지수치모델(LDAPS)의 행성경계층고도 검증)

  • In, So-Ra;Nam, Hyoung-Gu;Lee, Jin-Hwa;Park, Chang-Geun;Shim, Jae-Kwan;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Planetary boundary layer height (PBLH), produced by the Local Data Assimilation and Prediction System (LDAPS), was verified using RawinSonde (RS) data obtained from observation at Daegwallyeong (DGW) and Sokcho (SCW) during the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). The PBLH was calculated using RS data by applying the bulk Richardson number and the parcel method. This calculated PBLH was then compared to the values produced by LDAPS. The PBLH simulations for DGW and SCW were generally underestimation. However, the PBLH was an overestimation from surface to 200 m and 450 m at DGW and SCW, respectively; this result of model's failure to correctly simulate the Surface Boundary Layer (SBL) and the Mixing Layer (ML) as the PBLH. When the accuracy of the PBLH simulation is low, large errors are seen in the mid- and low-level humidity. The highest frequencies of Planetary boundary layer (PBL) types, calculated by the LDAPS at DGW and SCW, were presented as types Ι and II, respectively. Analysis of meteorological factors according to the PBL types indicate that the PBLH of the existing stratocumulus were overestimated when the mid- and low-level humidity errors were large. If the instabilities of the surface and vertical mixing into clouds are considered important factors affecting the estimation of PBLH into model, then mid- and low-level humidity should also be considered important factors influencing PBLH simulation performance.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.

Flood Response Disaster Prevention Facility Simulator Design and Prototype Development Using Spill and Inundation Model (유출·침수모델을 이용한 홍수대응 방재시설 시뮬레이터 설계 및 프로토타입 개발)

  • Seo, Sung Chul;Kim, Ui Hwan;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.259-266
    • /
    • 2023
  • Global climate change is increasing, and the damage and scale of localized torrential rains are increasing. Pre-flood analysis simulation results should be derived from rainfall data through rainfall forecasts to prevent flood damage. In addition, it is necessary to control the use and management of flood response disaster prevention facilities through immediate decision-making. However, methods using spills and flood models such as XPSWMM and GATE2018 are limited due to professional usability and complex analytical procedures. Prototype (flood disaster prevention facility simulator) of this study is developed by calculating rainfall (short-term and long-term) using CBD software development methods. It is also expected to construct administrator and user-centric interfaces and provide GIS and visible data (graphs, charts, etc.).

The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model (전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증)

  • Kim, Do-Hyoung;Kim, Geun-Hoi;Byon, Jae-Young;Kim, Baek-Jo;Kim, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.522-534
    • /
    • 2017
  • The purpose of this study is to verify urban flow and thermal environment by using the simulated Computational Fluid Dynamics (CFD) model in the area of Gangnam Seonjeongneung, and then to compare the CFD model simulation results with that of Seonjeongneung-monitoring networks observation data. The CFD model is developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The CFD_NIMR_SNU model is simulated using Korea Meteorological Administration (KMA) Local Data Assimilation Prediction System (LDAPS) wind and potential temperature as initial and boundary conditions from August 4-6, 2015, and that is improved to consider vegetation effect and surface temperature. It is noticed that the Root Mean Square Error (RMSE) of wind speed decreases from 1.06 to $0.62m\;s^{-1}$ by vegetation effect over the Seonjeongneung area. Although the wind speed is overestimated, RMSE of wind speed decreased in the CFD_NIMR_SNU than LDAPS. The temperature forecast tends to underestimate in the LDAPS, while it is improved by CFD_NIMR_SNU. This study shows that the CFD model can provide detailed and accurate thermal and urban area flow information over the complex urban region. It will contribute to analyze urban environment and planning.

Advanced Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 이용한 활주로 가시거리 예측 모델의 고도화)

  • Ku, SungKwan;Park, ChangHwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.491-499
    • /
    • 2018
  • Runway visual range (RVR), one of the important indicators of aircraft takeoff and landing, is affected by meteorological conditions such as temperature, humidity, etc. It is important to estimate the RVR at the time of arrival in advance. This study estimated the RVR of the local airport after 1 hour by upgrading the RVR estimation model using the proposed deep learning network. To this end, the advancement of the estimation model was carried out by changing the time interval of the meteorological data (temperature, humidity, wind speed, RVR) as input value and the linear conversion of the results. The proposed method generates estimation model based on the past measured meteorological data and estimates the RVR after 1 hour and confirms its validity by comparing with measured RVR after 1 hour. The proposed estimation model could be used for the RVR after 1 hour as reference in small airports in regions which do not forecast the RVR.

Applicability of VariousInterpolation Approaches for High Resolution Spatial Mapping of Climate Data in Korea (남한 지역 고해상도 기후지도 작성을 위한 공간화 기법 연구)

  • Jo, Ayeong;Ryu, Jieun;Chung, Hyein;Choi, Yuyoung;Jeon, Seongwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.447-474
    • /
    • 2018
  • The purpose of this study is to build a new dataset of spatially interpolated climate data of South Korea by performing various geo-statistical interpolation techniques for comparison with the LDAPS grid data of KMA. Among 595 observation data in 2017, 80 % of the total points and remaining 117 points were used for spatial mapping and quantification,respectively. IDW, cokriging, and kriging were performed via the ArcGIS10.3.1 software and Python3.6.4, and each result was then divided into three clusters and four watersheds for statistical verification. As a result, cokriging produced the most suitable grid climate data for instantaneous temperature. For 1-hr accumulated precipitation, IDW was most suitable for expressing local rainfall effects.

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Development of Radar-Satellite Blended QPF Technique to Rainfall Forecasting : Extreme heavy rainfall case in Busan, South Korea (레이더-위성 결합 초단기 강우예측 기법 개발: 부산 호우사례 적용 (2014년 8월 25일))

  • Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won;Yhang, Yoo Bin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.226-226
    • /
    • 2016
  • 최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수피해가 증가하고 있다. 이러한 홍수 피해를 줄이기 위해서는 정확도가 우수한 초단시간(1~2시간 이내) 예측 강우량 정보가 필요하다. 본 연구에서는 집중호우에 대한 초단시간예보 및 실황 예측을 위해 시공간적으로 고해상도 자료를 제공할 수 있는 기상레이더 강우자료와 위성영상 자료를 결합하여 초단기 강수 예측기법 개발 연구를 수행하였다. 또한 기상레이더 강우량은 지상강우관측에 비해 정확성이 낮고, 많은 불확실성을 포함하고 있으므로, 위성영상에서 산출되는 강우자료와 결합하여 강우추정의 정확도를 개선하고자 하였다. 레이더 볼륨자료에서 반사도 자료를 추출하여, 1.5km CAPPI(Constant Altitude Plan Position Indicator) 자료를 생성하고, 반사도 CAPPI 자료의 패턴 상관분석을 통하여 강우시스템의 최적 이동벡터를 산출하였다. 또한 이동벡터를 고려하여 시공간적으로 외삽하여 강우이동 예측 모델을 개발하고, 초기자료로 레이더와 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS) 영상자료에서 생성되는 강우자료를 결합한 강수장 자료를 이용하여 강수 예측장을 생성하였다. 레이더-위성 결합 초단기 강우예측 모델의 정확성 검증을 위하여 2014년 8월 25일 부산 및 영남 지역에 발생한 집중호우 사례에 대하여 지상기상자동관측시스템(Automatic Weather System, AWS) 강우 측정 결과를 비교 분석 하였으며, 그 적용 가능성을 검증하였다. 초단기 강우예측 분석 결과 지상강우자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보이며, 보다 정확한 강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검 보정이 필요할 것으로 사료된다.

  • PDF

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.