DOI QR코드

DOI QR Code

The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model

전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증

  • Kim, Do-Hyoung (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Geun-Hoi (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Byon, Jae-Young (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (Applied Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 김도형 (국립기상과학원 응용기상연구과) ;
  • 김근회 (국립기상과학원 응용기상연구과) ;
  • 변재영 (국립기상과학원 응용기상연구과) ;
  • 김백조 (국립기상과학원 응용기상연구과) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2017.09.13
  • Accepted : 2017.12.18
  • Published : 2017.12.31

Abstract

The purpose of this study is to verify urban flow and thermal environment by using the simulated Computational Fluid Dynamics (CFD) model in the area of Gangnam Seonjeongneung, and then to compare the CFD model simulation results with that of Seonjeongneung-monitoring networks observation data. The CFD model is developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The CFD_NIMR_SNU model is simulated using Korea Meteorological Administration (KMA) Local Data Assimilation Prediction System (LDAPS) wind and potential temperature as initial and boundary conditions from August 4-6, 2015, and that is improved to consider vegetation effect and surface temperature. It is noticed that the Root Mean Square Error (RMSE) of wind speed decreases from 1.06 to $0.62m\;s^{-1}$ by vegetation effect over the Seonjeongneung area. Although the wind speed is overestimated, RMSE of wind speed decreased in the CFD_NIMR_SNU than LDAPS. The temperature forecast tends to underestimate in the LDAPS, while it is improved by CFD_NIMR_SNU. This study shows that the CFD model can provide detailed and accurate thermal and urban area flow information over the complex urban region. It will contribute to analyze urban environment and planning.

이 연구의 목적은 강남 선정릉지역에서 전산유체역학모델(CFD)을 사용하여 도시지역의 흐름 및 열 환경 모의를 검증하는 것이고, CFD 모델의 모의결과와 선정릉 지역의 관측 자료와 비교하는 것이다. CFD 모델은 국립기상과학원과 서울대가 공동으로 연구 개발된 모델이다. CFD_NIMR_SNU 모델은 기상청 현업 모델인 국지예보모델(LDAPS)의 바람성분과 온도성분을 초기 및 경계조건으로 적용되었고 수목효과와 지표 온도를 고려하여 2015년 8월 4일에서 6일까지 강남 선정릉 지역을 대상으로 수치실험을 진행하였다. 선정릉지역에서 수목효과 적용 전후의 풍속을 비교하였을 때 평균 제곱근 오차(RMSE)는 각각 1.06, $0.62m\;s^{-1}$로 나타났고 수목효과 적용으로 풍속 모의정확도가 향상되었다. 기온은 LDAPS 과소 모의하는 경향을 나타내고 CFD_NIMR_SNU 모델에 의해 향상된 것을 확인하였다. CFD_NIMR_SNU 모델을 이용하여 복잡한 도시지역의 흐름과 열 환경을 자세하고 정밀한 분석이 가능하며, 도시 환경 및 계획에 대한 정보를 제공 할 수 있을 것이다.

Keywords

References

  1. Baik, J.J. and Kim, J.J., 1999, A numerical study of flow and pollutant dispersion characteristics in urban street canyons. Journal of Applied Meteorology, 38, 1576-1589. https://doi.org/10.1175/1520-0450(1999)038<1576:ANSOFA>2.0.CO;2
  2. Baik, J.J., Kim, J.J., and H. Fernando, J., 2003, A CFD model for simulating urban flow and dispersion. Journal of Applied Meteorology, 42, 1636-1648. https://doi.org/10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2
  3. Baik, J.J., Park, S.B., and Kim, J.J., 2009, Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. Journal of Applied Meteorology and Climatology, 48, 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  4. Balczo, M., Gromke, C., and Ruck, B., 2009, Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorologische Zeitschrift, 18, 197-206. https://doi.org/10.1127/0941-2948/2009/0361
  5. Bourbia, F., and Awbi, H.B., 2004, Building cluster and shading in urban canyon for hot dry climate, Part 1: Air and surface temperature measurements. Renewable Energy, 29, 249-262. https://doi.org/10.1016/S0960-1481(03)00170-8
  6. Byon., J. Y., Y. Choi, J., and Seo, B.G., 2010, Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over seoul. Atmosphere. 20(1), 13-26.
  7. Castro, I.P. and Apsley, D.D., 1997, Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flow. Atmospheric Environment, 31, 839-850. https://doi.org/10.1016/S1352-2310(96)00248-8
  8. Cheng, X. and Hu, F., 2005, Numerical studies on flow fields around buildings in an urban street canyon and cross-road. Advances in Atmospheric Sciences, 22, 290-299. https://doi.org/10.1007/BF02918518
  9. Choi, H.W., Kim, D.Y., Kim, J.J., Kim, K.Y., and Woo, J.H., 2012, Study on dispersion characteristics for fire scenarios in an urban area using CFD-WRF coupled model. Atmosphere, 22, 47-55. https://doi.org/10.14191/Atmos.2012.22.1.047
  10. Gross, G, 1993, Numerical simulation of canopy flow. Springer, 167 pp.
  11. Gu, H.J. and Ryu, Y.H., 2012, Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region. Journal of Environmental Impact Assessment, 21, 665-681.
  12. Kang, G. and Kim, J.J., 2015, Effects of trees on flow and scalar dispersion in an urban street canyon. Atmosphere, 25(4), 685-692. https://doi.org/10.14191/Atmos.2015.25.4.685
  13. Kim, G.H., Lee, Y.G., Lee, D.G., and Kim, B.J., 2016, Analyzing the cooling effect of urban green areas by Using the multiple observation network in the Seonjeongneung region of Seoul, Korea. Journal of Environmental Science International, 25(11), 1475-1484. https://doi.org/10.5322/JESI.2016.25.11.1475
  14. Kim, J.J., 2007, The effects of obstacle aspect ratio on surrounding flow. Atmosphere, 17(4), 381-391.
  15. Kim, J.J. and Baik, J.J., 2004, A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-${\varepsilon}$turbulence model. Atmospheric Environment, 40, 5640-5658.
  16. Kim, J.J. and Baik, J.J., 2005, Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Advances in Atmospheric Sciences, 22, 230-237. https://doi.org/10.1007/BF02918512
  17. Kim, Y.H., Choi, D.Y., and Chang, D.E., 2011, Characteristics of urban meteorology in Seoul metropolitan area of Korea. Atmosphere, 21, 257-271.
  18. Kochanski, A.K., Pardyjak, E.R., Stoll, R., Gowardhan, A., Brown, M.J., and Steenburgh, W.J., 2015, One-way coupling of the WRF-QUIC urban dispersion modeling system. Journal of Applied Meteorology and Climatology, 54(10), 2119-2139. https://doi.org/10.1175/JAMC-D-15-0020.1
  19. Kondo, H., Genchi, Y., Kikegawa, Y., Ohashi, Y., Yoshikado, H., and Komiyama, H., 2005, Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Boundary-Layer Meteorology, 116, 395-421. https://doi.org/10.1007/s10546-005-0905-5
  20. Kondo, H., Tokairin, T., and Kikegawa, Y., 2008, Calculation of wind in a Tokyo urban area with a mesoscale model including a multi-layer urban canopy model. Journal of Wind Engineering and Industrial Aerodynamics, 96, 1655-1666. https://doi.org/10.1016/j.jweia.2008.02.022
  21. Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F., 2001, A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-Layer Meteorology, 101, 329-358. https://doi.org/10.1023/A:1019207923078
  22. Kusaka, H. and Kimura, F., 2004, Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat Island simulation for an idealized case. Journal of the Meteorological Society of Japan. Ser. II, 67-80.
  23. Lee, S.H., 2011, Further development of the Vegetated Urban Canopy Model including a grass-covered surface parameterization and photosynthesis effects. Boundary-Layer Meteorology, 140, 315-342. https://doi.org/10.1007/s10546-011-9603-7
  24. Lee, S.H. and Baik, J.J., 2011, Evaluation of the vegetated urban canopy model (VUCM) and its impacts on urban boundary layer simulation. Asia-Pacific Journal of Atmospheric Sciences, 47(2), 151-165. https://doi.org/10.1007/s13143-011-0005-z
  25. Lee, S.H. and Park, S.U., 2008, A vegetated urban canopy model for meteorological and environmental modeling. Boundary-Layer Meteorology, 126, 73-102.
  26. Lee, S.H., Lee, H., Park, S.B., Woo, J.W., Lee, D.I., and Baik, J.J., 2016, Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: Numerical investigation using a coupled WRF-VUCM model, Quarterly Journal of the Royal Meteorological Society, 142(699), 2562-2578. https://doi.org/10.1002/qj.2847
  27. Lee, Y.S. and Kim, J.J., 2011, Effects of an apartment complex on flow and dispersion in an urban area. Atmosphere, 21, 95-108.
  28. Liu, C.H. and Barth, M.C., 2002, Large-eddy simulation of flow and scalar transport in a modeled street canyon. Journal of Applied Meteorology, 41, 660-673 https://doi.org/10.1175/1520-0450(2002)041<0660:LESOFA>2.0.CO;2
  29. Liu, J. and Diamond, J., 2005, China’s environment in a globalizing world. Nature, 435(7046), 1179-1186. https://doi.org/10.1038/4351179a
  30. Miao, Y., Liu, S., Chen, B., Zhang, B., Wang, S., and Li, S., 2013, Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Advances in atmospheric sciences, 30(6), 1663. https://doi.org/10.1007/s00376-013-2234-9
  31. Park, S.B., Baik, J.J., and Han, B.S., 2015, Large-eddy simulation of turbulent flow in a densely built-up urban area. Environmental Fluid Mechanics, 15, 235-250. https://doi.org/10.1007/s10652-013-9306-3
  32. Park, S. J., Choi, S.H., Kang, J.E., Kim, D.J., Moon, D.S., Choi, W.S., Kim, J.J., and Lee, Y.G., 2016, Effects of differential heating by land-use types on flow and air temperature in and urban area. Korean Journal of Remote Sensing, 32(6), 603-616. https://doi.org/10.7780/kjrs.2016.32.6.5
  33. Patankar, S.V., 1980, Numerical Heat Transfer and Fluid flow. Physics of Fluids A: Fluid Dynamics, 197pp.
  34. Ryu, Y.H., Baik, J.J., and Lee, S.H., 2011, A new singlelayer urban canopy model for use in mesoscale atmospheric models. Journal of Applied Meteorology and Climatology, 50, 1773-1794. https://doi.org/10.1175/2011JAMC2665.1
  35. Sailor, D.J., 2011, A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. International Journal of Climatology, 31(2), 189-199. https://doi.org/10.1002/joc.2106
  36. Seto, K.C. and Shepherd, J.M., 2009, Global urban landuse trends and climate impacts. Current Opinion in Environmental Sustainability, 1(1), 89-95. https://doi.org/10.1016/j.cosust.2009.07.012
  37. Tewari, M., Kusaka, H., Chen, F., Coirier, W.J., Kim, S., Wyszogrodzki, A.A., and Warner, T.T., 2010, Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Research, 96, 656-664. https://doi.org/10.1016/j.atmosres.2010.01.006
  38. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G., 1992, Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics., A4, 1510-1520.