• Title/Summary/Keyword: 구조지질

Search Result 1,645, Processing Time 0.025 seconds

Structural Geometry of a Regional-scale Overturned Fold in the Daecheong Island, Central-western Korean Peninsula (한반도 중서부 대청도에 발달하는 광역규모 과습곡의 구조기하학적 특징)

  • Jeong-Yeong Park;Deung-Lyong Cho;Seung Hwan Lee;Yujung Kwak;Seung-Ik Park
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • This study reports the structural geometry and folding mechanism of a regional-scale overturned fold in the Daecheong Island, central-western part of the Korean Peninsula. Based on low-hemisphere stereographic and down-plunge projections using data from a detailed field survey, we classify the regional-scale fold as an open overturned fold shallowly plunging toward NE. The asymmetric and symmetric parasitic folds in the limb and hinge zones indicate layer-parallel shortening prior to flexural-flow folding. Fold dating must be required to decipher the orogenic process causing the regional-scale overturned fold in the Daecheong Island.

A Study on the Automation Algorithm to Identify the Geological Lineament using Spatial Statistical Analysis (공간통계분석을 이용한 지질구조선 자동화 알고리즘 연구)

  • Kwon, O-Il;Kim, Woo-Seok;Kim, Jin-Hwan;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.367-376
    • /
    • 2017
  • Recently, tunneling under the seabed is becoming increasingly common in many countries. In Korea, there are proposals to tunnel from the mainland to Jeju Island. Safe construction requires geologic structures such as faults to be characterized during the design and construction phase; however, unlike on land, such structures are difficult to survey seabed. This study aims to develop an algorithm that uses geostatistics to automatically derive large-scale geological structures on the seabed. The most important considerations in this method are the optimal size of the moving window, the optimal type of spatial statistics, and determination of the optimal percentile standard. Finally, the optimal analysis algorithm was developed using the R program, which comprehensibly presents variations in spatial statistics. The program allows the type and percentile standard of spatial statistics to be specified by the user, thus enabling an analysis of the geological structure according to variations in spatial statistics. The geotechnical defense-training algorithm shows that a large, linear geological lineament is best visualized using a $3{\times}3$ moving window and a 10% upper standard based on the moving variance value and fractile. In particular, setting the fractile criterion to the upper 0.5% almost entirely eliminates the error values from the contour image.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Structural Analysis of the Danyang Area, Danyang Coalfield, Korea (단양지역의 지질구조)

  • Kim, Jeong Hwan;Koh, Hee Jae
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.61-72
    • /
    • 1992
  • The Danyang area consists of the thrust and folded sedimentary rocks of Paleozoic and Mesozoic Era. The area is bounded by major tectonic units which are the Gagdong Thrust to the west and the Okdong Fault to the east. According to the structural analyses, the area is affected by polyphase deformation. This study establishes deformational sequence in the area. Mylonite zone along the Okdong Fault corresponds to the first generation of structures ($D_1$). $D_1$-structures are discrete shear zone in the Jangsan Formation and bedding parallel extensional deformation in the Cambro-Ordovician sequences. $D_2$-structures were formed prior to the sedimentation of the Jurassic Bansong Group, which are the NW-trending fold and linear structures. After sedimentation of the Bansong Group, the area is strongly affected by the Daebo Orogeny which produces NE-trending thrusts, folds and linear structures. Earlier structures were tightened and rotated toward NE. Some thrust faults did not propagate into the Bansong Group. It is suggested either the Bansong Group acted as a decoupling horizon or rest on unconformably on the thrust faults. The area is weakly affected by $D_4$-event of which structures are E-W trending folds and faults. The Jugryeong Fault clearly cut the earlier folds and thrust faults. The rocks within the fault zone were sliced and rotated during the strike-slip movements. Block rotation and transpressional features can be commonly observed.

  • PDF

Case Study on the Mitigation of Dangerous Slope Considering the Value of Geoheritage (지질유산 가치를 고려한 위험비탈면 보존 방안 사례 연구)

  • Jeong, Jun-Ho;Kim, Seung-Hyun;Park, Byung-suk;Woo, Yong-Hoon;Kang, Yun-seok;Koo, Ho-bon;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.71-84
    • /
    • 2020
  • Various geological structures are found on the slope of Bangnim district in Pyeongchang, Gangwon-do, based on the Paleozoic Joseon Supergroup Limestone. The recumbent fold observed on the slope is a very rare geological structure that has not been found in Korea, and has important academic value in exploring the formation process of the Paleozoic geological structures in the Gangwon region. In this study, discussed the geological value of the geological structure observed on the slope of the road, and studied the management method of rockfall problem slopes. The state of development of recumbent folds has conservation value in geological scarcity and specificity. Preservation management measures should be prepared through the protection of slopes and measures to reduce of rockfall risks as geoheritage with an important value in geology science and education. Furthermore, it is expected to be preserved and utilized as a geopark.

A Study on Slope Angle and Summit Level Analysis of the Taehwa River Basin (태화강 유역의 경사와 절봉면 분석)

  • ;Kim, Joo-Hwan
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.15-29
    • /
    • 1989
  • The purpose of this study is to analyze the Slope Angles and Summit Levels in the relation with the geological structures in the Taehwa River Basii where the NNE-SSW trending Yangsan fault and subsiduary fault are well developed. The mean slope angle in the Taehwa river basin is 12.18$^{\circ}$. The mean slope is higher in the volcanic and metamorphic terrain than in the area of granitic and sedimentary rocks. In view of a slope angle, the area can be divided into four categories, that is, low plains (0-5$^{\circ}$), hilly gentle slopes (5-15$^{\circ}$), moderate steep mountain slope (15-25$^{\circ}$), and steep mountain slope (over 25$^{\circ}$). The analysis of summit level exhibits that the mean of the highest points in the Taehwa River Basin composed mainly of the volcanic and metamorphic rocks is 327m.

  • PDF

A Case Study on Design of Slope Failure in Expressway (고속도로 붕괴 절토 비탈면의 설계사례)

  • Yu, Byeong-Ok;Jang, Hyeon-Ik;Sim, Jae-Won;Han, Won-Jun;Na, Gwang-Hui
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.713-727
    • /
    • 2009
  • 절토비탈면의 붕괴는 주로 지질구조 적으로 취약한 구간에서 강우, 지진, 발파진동, 굴착 등의 외적인 요인이 작용하였을 때 비탈면의 붕괴가 수반되는 경우가 많으며 내적인 요인으로 작용하는 지질구조는 구조선의 종류에 따라 붕괴규모나 붕괴양상에서 상당한 차이를 보이는 특성을 보인다. 특히, 비탈면 붕괴는 단층이나 점토가 충전된 구조선에서 문제가 많이 발생되고 방향성이 뚜렷한 엽리 및 절리에서 붕괴가 빈번한 실정이다. 단층은 일반적으로 모든 암종에서 나타나는 지질구조이나 특히, 변성암중 편마암에서 붕괴빈도가 빈번하게 발생되고 점토층이 수반되는 경우에 심하다. 본 논문은 공사당시 비교적 규모가 크게 붕괴가 발생된 붕적층 절토 비탈면과 단층파쇄대 및 암질불량의 비탈면의 붕괴사례의 안정검토 사례를 소개하고자 한다.

  • PDF

Microtremor and Underground Structure (상시미동과 지하구조)

  • 김성균
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.109-120
    • /
    • 1991
  • Applications of microtremor to geological engineering are widely reviewed and observed microtremors are processed to show evidences of close relationship between the predominant periods of microtremor and underground structure. The ground vibrates continuously at all times and the elastic vibration is called microtremor (0.5-20Hz) or microseisms (0.01-0.1Hz) according to their frequency range. The vibration is believed to have propagative nature like those of the dispersive surface waves or multireflected shear waves. Microtremors were recorded at selected thress places of which subsoil structures are well distinguished in the Kyongsang Sedimentary Basin. It is found that the underground structures estimated from microtremor analysis coincide well with the known structures. The microtremor analysis of the long period range can be an inexpensive and effective tool in geological engineering for the evaluation of the underground structure, site-specific reponse spectrum, and seismic microzonations.

  • PDF

Shallow Geological Structure of the Yongil Bay, Southeast Coast of Korea (한국 남동부 영일만의 천부 지질구조)

  • Choi Dong-Lim;Kim Seong-Ryul;Suk Bong-Chool;Oh Jae-Kyung
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.53-62
    • /
    • 1993
  • The geologic structure of the Yongil Bay was studied in detail based on high resolution seismic profiles. The seafloor trends NE to SW with a deeper part off the Kuryong Peninsula. The seafloor is rather smooth due to the Quaternary fluvial deposits in the lower part and muddy sediments in the upper part. The seafloor off Umockri is very irregular due to erosion where Tertiary sedimentary rocks crop out. The underlying basement rocks were strongly deformed with faults and folds. High-angled reverse faults mostly trend N-S and NNW-SSE and are indicative of westward thrusting. Normal faults in NW-SE and WNW-ESE directions occur locally. Large folding structures trend NE-SW nearshore area of Umockri. The geologic structure suggests that the bay was subject to compressional stress regimes trending E-W and/or NW-SE prior to the early Late Miocene.

  • PDF