• Title/Summary/Keyword: 구조물-유체의 상호작용

Search Result 132, Processing Time 0.029 seconds

Numerical Analysis of Four Circular Columns in Square Array and Wave Interaction (파랑과 정사각형 배열의 원형 기둥 구조물의 상호작용 수치해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.558-565
    • /
    • 2017
  • Accurate prediction of wave-structure interactions is important in the safety and design cost effectiveness of fixed and floating offshore structures exposed to extreme environmental conditions. In this study, regular waves and circular column structure interactions for four circular columns in regular waves are analyzed. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. When the four circular columns are arranged in a square array, the interactions according to the incident slopes of the regular waves are analyzed. The wave run-up in the circular column surface was compared according to the slope of the incident wave. It was confirmed that high amplitude waves are generated between the circular columns due to the interaction between the circular column and the incident wave. It is expected that this analytical result will be used as the basic data of the study on the air gap due to the interaction between the structure and incident wave.

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

Prediction of Deformation of an Oil-fence by using Fluid$\cdot$Structure Interaction Method (유체$\cdot$구조물 상호 작용 기법을 이용한 오일 펜스의 변형 예측)

  • Kim T. G.;Kim W.;Hur N.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.16-22
    • /
    • 2000
  • In the present study a method of computing fluid-structure interaction is presented to simulate the deformation shape of an oil fence which is used to contain or to divert the split oil in sea water. The computation is performed by taking into account of the force and moment balance in each computational element of the oil fence. The forces and moments acting on each element of the structure is computed from the flow analysis, which in turn is used to predict deformed shape of the structure until the procedure converges. The flexibility of the oil fence was also considered in the analysis. It is shown from the present study that the predicted deformed shapes agree quite well with the available experiment data.

  • PDF

An Analysis of Coupled Wind-Structure Interaction (바람과 구조물의 상호작용 해석)

  • 이재석;김종대
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.4-10
    • /
    • 1994
  • 컴퓨터 성능과 전산유체역학 분야는 지속적으로 발전하고 있으므로 이에 따라 유체의 유동장은 더욱 정확하고 상세히 묘사할 수 있게 될 것이며, 더불어 ALE유한요소법 등과 같은 유체-구조 상호작용해석 기법이 발전해 나갈 것이다. 따라서, 현재 수행되고 있는 풍동실험은 다양한 모형제작으로 인한 비용문제와 완성된 모형의 정밀도 문제, 각 모형에 대한 반복적인 실험과정 등 적절한 설계형상을 선택하는 과정에서 효율성이 낮은 경우가 많으므로 수치해석에 의한 내풍안정성 평가과정을 병행함으로써 실험의 효율성이 낮은 부분을 보완, 최소화할 수 있을 것이다. 특히 적은 비용 및 시간내에 개략적인 내풍안정성 파악이 요구되는 개념설계 및 초기설계단계에 근사적인 내풍안정성 검토 기술로서 결과적으로 활용될 수 있을 것이다. 또한 수치해석기법의 가장 큰 장애요인었던 유체 유동장의 모사정도가 향상됨에 따라 수치해석에 의한 장대구조물의 내풍안정성해석은 앞으로 상당한 발전이 있을 것으로 전망된다.

  • PDF

Analytical Performance Comparison of Scour Protection of Rubble Mound Structure Shape using Simulation (해석적 모의조파실험을 이용한 해안사석구조물 형상에 따른 해저면 세굴 방지 성능 비교)

  • Kang, Kyoung-Won;Kim, Kee Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.117-122
    • /
    • 2012
  • Coastal structures, constructed for preventing coastal slope erosion, often causes the scour on the boundary between the coastal structure and the sea-bed, which might lead to collapse of coastal structures. To prevent the collapse, the usual upright block type coastal structures can be modified to other forms or systems of coastal structures. To validate the performance of the proposed systems, it is necessary to conduct high cost hydraulic experiments. If numerical modeling can be performed prior to the hydraulic experiments and the performance of the proposed systems is analyzed numerically in advance, the expenses can be reduced significantly by optimizing the number of cases for conducting the experiments. In this study, a fluid-structure interaction analysis procedure is proposed for modeling the hydraulic experiments of costal structures using the finite element package, LS-DYNA. As can be found in the usual hydraulic experiments, fluid velocities of potential scour locations are monitored and analyzed in detail for four types of coastal structures, block, step, trapezoid and rubble mound.

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

Stochastic Analysis of Base-Isolated Pool Structure Considering Fluid-Structure Interaction Effects (유체-구조물 상호작용을 고려한 면진구조물의 추계학적 응답해석)

  • Koh, Hyun Moo;Kim, Jae Kwan;Park, Kwan Soon;Ha, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.463-472
    • /
    • 1994
  • A method of stochastic response analysis of base-isolated fluid-filled pool structures subject to random ground excitations is studied. Fluid-structure interaction effects between the flexible walls and contained fluid are taken into account in the form of added mass matrix derived by FEM modeling of the contained fluid motion. The stationary ground excitation is represented by Modified Clough-Penzien spectral model and the nonstationary one is obtained by imposing an envelope function on the stationary one. The stationary and nonstationary response statistics of the two different isolation systems are obtained by solving the governing Lyapunov covariance matrix differential equations.

  • PDF

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing (정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구)

  • Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF