• Title/Summary/Keyword: 구조물 안전진단

Search Result 560, Processing Time 0.029 seconds

Estimation of Nondestructive Strength Equations Based on the Results of In-situ Concrete Strength for Existing Bridges (국내 교량의 현장 코어강도를 활용한 개선된 비파괴강도 추정식 제안)

  • Kim, Hun-Kyom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2018
  • Nondestructive strength Equations are commonly used to determine the strength of concrete. However, the application of the existing equations may include many errors because this method is proposed on the basis of limited experimental parameters while actual bridges have various parameters such as conditions of concrete mixtures, properties of concrete strength, etc. Also, the error among the existing equations causes the confusion when engineers select the proper estimation equation for the concerned bridge. In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. According to results of analyses, the nondestructive strength equation proposed by CNDT Committee of Architectural Institute of Japan had high relationship with core strength. However, the strengths predicted by this equation, are underestimated when concrete's strengths are over 30 MPa, otherwise, they are overestimated. Also in this paper, based on the relationship between the estimated nondestructive concrete strengths and the core specimen strengths the modified strength equation through simple correlation analysis is proposed.

Development of a 3D Model-Based Demonstration DB System for Efficient Management and Utilization of Inspection and Diagnosis Data of Small and Medium-Sized Bridges (중소규모 교량의 점검·진단 데이터 효율적 관리 및 활용을 위한 3D 모델 기반 실증 DB시스템 개발)

  • Park, Se-Hyun;Jung, Dae-Sung;Seo, Jin-Sook;Kim, Tae-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • As the aging of large domestic SOC facilities accelerates, facility maintenance is also changing from safety evaluation based on the current condition to performance-oriented preventive and preemptive maintenance based on the prediction of the level of future obsolescence. In particular, in the case of bridges, class 1 and 2 bridges are systematically managed along with many studies, but for small and medium-sized class 3 bridges there is no collection and utilization of historical data presenting performance degradation during their service life. Therefore, in this study, 3D model-based demonstration DB system was designed and developed to intuitively check the damage change rate at the damage location by registering the maintenance history by life cycle for each member's exterior damage in the 3D bridge object and to enable API-based comprehensive performance evaluation.

A Study on the Flaw Prevention Countermeasure of Crack in Apartment House Underground Parking Area (아파트 지하주차장의 균열방지 대책 - 현장사례조사를 중심으로 -)

  • Jung Soon-Oh;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.1 s.9
    • /
    • pp.115-123
    • /
    • 2002
  • Recently all basement floor of apartment site have utilized as parking area to use efficiently space and to ensure lawful parking car figure. And the top of parking area has used as working vehicle's path and materials' carrying area during construction. Thus because crack and leakage status in underground parking area of under construction or completion building generate excessively not only performance of structure is diminished but also flaw repair cost is put in a lot of. And abroad confidence is diminish. So this study is intended to diminish flaw focus on investigation of under construction and completion fields through examine closely cause of crack and leakage status of apartment house underground parking area and prepare countermeasure with respect to design, construction and maintenance.

Flexural Tensile Strength of Concrete Block Masonry (비보강 콘크리트 조적조의 휨인장강도)

  • Kim, Young-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.119-126
    • /
    • 2005
  • The objective of this paper is to evaluate the flexural tensile strength of unreinforced concrete masonry wall to ensure the structural safety in out-of-plane behaviors under the wind or earthquake loads. Flexural tensile strength of unreinforced concrete masonry wall has been obtained from the full scale tests of total 327 specimens and the statistical analysis are performed for each of the cases. The flexural tensile strength derived from experiments is classified as 13 groups according to masorny units, mortar ingredients, and the direction of tensile stresses and the mean tensile strength and the variable coefficient are obtained for each case. The uniform and concentrated transverse loads have been applied over the face of the wall specimens. The ultimate mean flexural tensile strengths are distributed from 1,564 kPa to 363 kPa according to masonry units, mortar ingredients, and other factors. The allowable flexural tension stress criteria will be established based on the mean flexural tensile strengths in the future.

Abnormal Response Analysis of a Cable-Stayed Bridge using Gradual Bilinear Method (Gradual Bilinear Method를 이용한 사장교의 케이블 손상응답 해석)

  • Kim, Byeong-Cheol;Park, Ki-Tae;Kim, Tae-Heon;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.60-71
    • /
    • 2014
  • Cable-stayed bridge, which is one of the representative long-spanned bridge, needs prompt maintenances when a stay cable is damaged because it may cause structural failure of the entire bridge. Many researches are being conducted to develop abnormal behavior detection algorithms for the purpose of shortening the reaction time after the occurrence of structural damage. To improve the accuracy of the damage detection algorithm, ample observation data from various kinds of damage responses is needed. However, it is difficult to measure an abnormal response by damaging an existing bridge, numerical simulation can be an effective alternative. In most previous studies, which simulate the damage responses of a cable-stayed bridge, the damages has been considered as a load variation without regard to its stiffness variation. The analyses of using these simplification could not calculate exact responses of damaged structure, though it may reserve a sufficient accuracy for the purpose of bridge design. This study suggests Gradual Bilinear Method (GBM) which simulate the damage responses of cable-stayed bridge considering the stiffness and mass variation, and develops an analysis program. The developed program is verified from the responses of a simple model. The responses of a existing cable-stayed bridge model are analyzed with respect to the fracture delay time and damage ratio. The results of this study can be used to develop and verify the highly accurate abnormal behavior detection algorithm for safety management of architecture/large structures.

Analysis of Behavior Characteristics According to The Foundations Fixing Conditions of Storage Racks (적재설비 기초 고정조건에 따른 거동특성 분석)

  • Park, Chae-Rin;Heo, Gwang-Hee;Kim, Chung-Gil;Park, Jin-Yong;Ko, Byeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.68-76
    • /
    • 2021
  • Storage racks have suffered huge losses due to earthquakes, but related research and regulations are relatively insufficient non-structural elements compared to the structural elements. In this study, we tried to experimentally analyze the behavioral characteristics of storage racks due to external force according to the fixing conditions of the column-foundations connection of storage racks. In general, the column-foundations connection of storage racks is installed according to the user's convenience without installation standards and regulations. For this reason, this study conducted a behavior analysis test on four full-scale storage racks with the condition of column-foundations connection of four typical storage racks. The behavior characteristics analysis test was performed by two-direction of the shake table with El-Centro seismic wave. To confirm the behavior characteristics according to the magnitude of the seismic load, 50% ~ 150% of the seismic waves were increased by 50% for each test. In addition, a resonance search test was conducted to confirm the natural frequency of each storage racks foundations fixing condition. Among the data obtained through the test, the displacement of the top layer and the permanent displacement after the test were compared for each condition to analyze the behavior characteristics of the column-foundations fixed conditions of the storage racks. As a result, the change of natural frequency was small in storage racks due to the change of the conditions of the foundations, and the behavior characteristics were changed due to the difference of the restoring force due to the change of the storage racks foundations condition rather than the influence of the natural frequency of the input load.

A Study on Life Cycle Management of River facilities using Performance Evaluation Model (성능평가모델을 활용한 하천시설의 생애주기 관리에 관한 연구)

  • Kim, Jin-Guk;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.376-376
    • /
    • 2022
  • 전 세계적으로 홍수의 발생빈도가 증가함에 따라, 하천 내 홍수피해를 경감하기 위해 설치하는 하천시설에 대한 중요성이 강조되고 있다. 하천시설은 홍수조절, 이수를 위한 흐름의 제어와 유도, 자연환경의 유지 및 개선 등 중요한 역할을 하고 있으나, 구조적으로 물과의 접촉이 많아 물리적 손상이나 노후화가 매우 빠르게 진행되는 특성이 있다. 시설물의 노후화가 지속될수록 안정성을 보장하기 어려워 자연재난의 규모를 증가시킬 위험성이 있다. 하천시설의 선제적 유지관리를 위해, 본 연구에서는 시설물통합정보관리시스템(Facilty Management System; FMS)의 정밀안전진단 결과를 활용하여 시설물의 사용연수에 따른 성능지표의 변화를 기반으로 회귀식 형태의 성능평가모델을 개발하였다. 기존연구와의 비교를 통해 성능평가모델의 적합성을 확인하였으며, 개발한 성능평가모델은 하천시설의 생애주기를 통합적으로 고려함으로써 정량적인 상태를 예측할 수 있다는 장점이 있다. 본 연구에서 제안된 성능평가모델 결과는 하천시설의 생애주기 관리를 위한 기초자료로 활용 가능할 것으로 기대된다.

  • PDF

Integration of 3D Laser Scanner and BIM Process for Visualization of Building Defective Condition (3D 레이저 스캐닝과 BIM 연동을 통한 건축물 노후 상태 정보 시각화 프로세스)

  • Choi, Moonyoung;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • The regular assessment of a building is important to understand structural safety and latent risk in the early stages of building life cycle. However, methods of traditional assessment are subjective, atypical, labor-intensive, and time-consuming and as such the reliability of these results has been questioned. This study proposed a method to bring accurate results using a 3D laser scanner and integrate them in Building Information Modeling (BIM) to visualize defective condition. The specific process for this study was as follows: (1) semi-automated data acquisition using 3D laser scanner and python script, (2) scan-to-BIM process, (3) integrating and visualizing defective conditions data using dynamo. The method proposed in this study improved efficiency and productivity in a building assessment through omitting the additional process of measurement and documentation. The visualized 3D model allows building facility managers to make more effective decisions. Ultimately, this is expected to improve the efficiency of building maintenance works.

A Development of Representative Condition Evaluation Standard for LNG Storage Tank Structures (LNG 저장탱크 구조물의 종합적 상태평가기준 개발)

  • Kim, Jung-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.44-51
    • /
    • 2018
  • As the LNG storage tank is aged, if there is a crack in the outer wall concrete or corrosion of the reinforcing steel, there is a risk of a major accident such as collapse of the structure depending on the type and degree of damage. Since 2014, LNG storage tanks have undergone precise safety diagnosis and safety inspection has been carried out. The condition evaluation criteria for each component have been revised and applied in January 2016. The condition evaluation standard is to evaluate the status of storage tanks based on the appearance survey and material test results of LNG storage tanks and it is important for maintenance. In addition, the representative condition evaluation standard that shows the comprehensive state of each LNG storage tank is important in maintenance, but the related standard for LNG storage tank outer concrete is not available in Korea and abroad, and development of the condition evaluation standard is necessary. In this paper, we examined the structural characteristics of LNG storage tanks, analyzed the status of the condition evaluation criteria for each member, and developed a comprehensive status rating system by weighting the members. We used the AHP(Analytic Hierarchy Process) technique and developed a representative conditon evaluation criteria through surveys of professional organizations.

Enhancing Seismic Performance of Exterior R.C. Beam-Column Connections Using Headed Bars (헤디드 바를 사용한 외부 철근콘크리트 보-기둥 접합부의 내진성능 향상)

  • Shin, Hyun Oh;Yang, Jun Mo;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • The reinforced concrete beam-column connections are in lack of constructability and are likely to show anchorage failure because of the complex details of joint regions. Under seismic loads, a destruction of the column or the beam-column joint leads to collapse of the whole structures. For this reason, the safety of structures has to be guaranteed by following procedures which are based on the strong column-weak beam design concept: 1) failure of beam by generating plastic hinge in the beam maintained a certain distance from the surface of column, 2) failure of column or beam-column joint. In this study, headed bars were used as longitudinal reinforcements of beam and joint reinforcements in order to improve the strength and constructability of joint and to relocate plastic hinge. The finite element analyses (FEAs) were performed to the reinforced concrete beam-column joints utilizing headed bar reinforcements. To verify the availability of the analysis models, the FEAs for experimental tests performed by previous researchers were conducted and compared with the experimental results. Additional variables are also considered to confirm the excellence of headed bars. Analysis results indicate that the constructability of beam-column connections can be improved by using headed bars for the full anchorage of longitudinal reinforcements of beam under similar structural performance. In addition, the plastic hinge was relocated to the intended place by using headed bars as joint reinforcements. Under cyclic displacement loading, the energy dissipation capacity and ultimate stress were increased and the decrease in stiffness was minimized.