• Title/Summary/Keyword: 구조물 붕괴 감지

Search Result 7, Processing Time 0.017 seconds

Safety Monitoring System of Structures Using MEMS Sensor (MEMS 센서기반의 구조물의 안전 모니터링 시스템)

  • Lim, Jaedon;Kim, Jungjip;Hong, Dueui;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1307-1313
    • /
    • 2018
  • In recent years, there have been frequent occurrences of collapsing buildings and tilting accidents due to frequent earthquakes and aging of buildings. Various methods have been proposed to prevent disasters on these buildings. In this paper, we propose a system that provides an indication of anomalous phenomena such as collapse and tilting of buildings by real-time monitoring of IoT(Internet of Things) based architectural anomalies. The MEMS sensor is based on the inclinometer sensor and the accelerometer sensor, transmits the detected data to the server in real time, accumulates the data, and provides the service to cope when the set threshold value is different. It is possible to evacuate and repair the collapse and tilting of the building by warning the occurrence of the upper threshold event such as the collapse and tilting of the building.

A Vision-based Pipe Support Displacement Measurement Method Using Moire Patterns (모아레 현상을 이용한 영상기반 파이프 서포트 변위측정 방법)

  • Park, Junbeom;Park, Semi;Kim, Jaehyeon;Kim, Jungyeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • It is very important to measure the displacement of a structure to evaluate the safety of the structure. This study shows a methodology to measure the displacement to determine the stability of a structure when it is damaged by loads. The methodology used Moiré's phenomenon and was verified through experiments. The experiments utilized pipes to simulate the pipe supports in the construction site and measured the vertical displacement of the Moiré interference patterns according to the horizontal displacement of the pipes. Experiments confirmed that the linear relationship between horizontal displacement of pipes and vertical displacement of Moiré patterns and derive a relational expression. In conclusion, the methodology presented in this work allows us to simultaneously measure a number of vertical members' displacements regardless of distance and determine the safety of the structure.

Development of a Customized Beacon Equipped with a Strain Gauge Sensor to Detect Deformation of Structure Displacement (구조물의 변위 변형 감지를 위한 변형률 센서를 장착한 커스터마이징 비콘 개발)

  • Kim, Junkyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • This study attempted to detect possible collapse and fire accidents in facilities for disaster monitoring of large facilities, and to develop a customized beacon to recognize the internal situation of an IoT-based facility when a disaster occurs. In the case of data measurement using the existing strain gauge sensor, the strain gauge sensor was connected by wire to measure it, but this study changed it to wireless so that the presence and absence of structural deformation can be monitored in real time. In this process, in order to use the Wheatstone bridge, a strain sensor module that can be connected to a customized beacon was manufactured, and a system configuration was conducted to remotely check the measurement data. To verify measurement data, 10 customized beacons and 2 gateways were installed on the 15th floor of the Advanced Institue of Convergence Technology, and as a result of analysis of measurement data, it was confirmed that the strain data values were distributed between 7 and 8.

Developing the Installation Guideline of Building Monitoring Systems for Hazardous Symptom Measurements with Visual Perception (시지각적 요소를 갖춘 건축물 위험징후 측정 모니터링 시스템 설치 가이드라인 개발연구)

  • Kim, Heejae;Kim, Geunyoung;Shin, Jungjae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.374-382
    • /
    • 2020
  • Purpose: Recently, structural defects in old safety management facilities have led to the collapse of buildings and facilities. The purpose of this study is to develop guidelines for the installation of regular monitoring systems that determine the optimal sensor location for monitoring exhibition space building sensors equipped with visual elements in order to analyze the risk signs of exhibition space buildings and develop measurement technology. Method: The components, installation locations, alarm criteria, and management measures of the instrument are presented. Result: A measure was proposed to determine the location of sensors, secure signal processing technology for analysis by having unified visual perception, and configure optimal 'risk sign detection' based on sensor monitoring through test-bed operation. Conclusion: The results of this study can be prepared against the disasters that may arise from the collapse of exhibition buildings, and contribute to strengthening safety management capabilities.

Development of Infrastructure automatic alert populating system in Geotechincal Monitoring field (지반 분야에서의 시설물 안전위험 자동화 상황전파 시스템 개발)

  • Jung, Jea-Hyen;Kim, Yong-Su;Han, Sang-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.933-939
    • /
    • 2010
  • Gathering information and systemization of infrastructure disaster management is to reduce uncertainties in making decisions and maximize the number of alternations for reasonable decision making. The key object is the progress report & propagation automation system based on sensors, which is major for providing objective data to realize and support decision makings and delivering decision to a certain area, department, manager and other people rapidly. Collecting, reviewing and database of existing progress report & propagation manual in order to achieve networking of safety management on major social infrastructure of the nation, materialization of field-oriented intelligent business process by developing mobile safety management command transmission device and integrating it into facility safety management network.

  • PDF

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF