• Title/Summary/Keyword: 구조물 거동

Search Result 3,030, Processing Time 0.028 seconds

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

Dynamic Analysis for a Arch Railway Bridge Considering Real Train Loads (실 열차하중을 고려한 아치 교량의 동적해석)

  • Kim, Jung-Hun;Lee, Joo-Tak;Lee, Myeong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • 고속열차(KTX)를 지지하는 구조물은 차량과 지속적인 접촉을 갖는 구조를 가지고 있으므로 고속열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 고속열차의 연행이동집중하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계 기준사항들을 만족해야한다. 호남고속철도 설계지침에 의하면 고속열차(KTX)의 운행 안정성을 평가하기 위한 항목들로 대상 교량의 고유진동수, 상판 수직가속도, 면틀림 그리고 승차감을 고려한 연직처침 등이 요구된다. 따라서, 본 연구에서는 KTX의 실 열차하중을 고려하여 연행이동집중하중으로 아치 교량의 동적거동을 검토하였으며, 호남고속철도 설계지침을 적용하여 대상 교량의 운행 안정성을 평가하였다.

  • PDF

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.

Shaking Table Tests for Evaluation of Seismic Performance of Quay Walls (안벽 구조물의 내진성 평가를 위한 진동대 시험)

  • 김성렬;박영호;권오순;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.75-81
    • /
    • 2000
  • 본 연구에서는 진동대 시험을 실시하여 지진동에 대한 일반 안벽 구조물과 내진 보강된 안벽 구조물의 동적거동을 분석하고 내진보강기법의 성능을 평가하였다. 진동대 시험은 기초지반이 조밀한 경우와 느슨한 경우, 자갈 뒤채움재를 설치한 경우 그리고 내진대책공법으로 경량재 치환공법과 모래다짐말뚝 공법을 적용한 경우 등 총 5가지 시험단면에 대하여 실시하였다. 과잉간극수압, 가속도 반응 그리고 지반의 변형양상을 분석한 결과, 기초지반과 뒤채움 지반의 연약화가 안벽 구조물의 동적거동에 큰 영향을 미치며, 경량재 치환공법과 모래다짐말뚝공법이 안벽 구조물의 내진성능을 향상시키는에 효과적인 것으로 나타났다.

  • PDF

Practical Prediction of Creep, Shrinkage and Durability of Concrete In Japan (콘크리트 크리프, 수축 및 내구성에 대한 일본의 실무예측)

  • Kwon, Seung Hee;Kang, Su Tae
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.16 no.1
    • /
    • pp.90-101
    • /
    • 2012
  • 최근 일본의 설계규정(설계기준 내 재료모델)은 전 세계에서 수집된 실험 결과들을 바탕으로 개발된 것으로, 세계 최고 수준의 예측 방법으로 알려져 있다. 그럼에도 불구하고 장기간 관측된 실제 교량의 처짐은 예측결과와 많은 차이를 나타내고 있다. 이 논문에서는 콘크리트의 시간의 존적 거동에 대한 일본 설계규정의 주요 변천 과정을 소개하고, 실제 장기거동과 예측결과가 큰 차이를 보이는 원인에 대한 논의가 이루어질 것이다. 또한 내구성이 높고 경제적인 콘크리트 구조물 건설을 위한 앞으로의 연구방향이 제시될 것이다.

  • PDF

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

Development of Three Dimensional Analysis Method of High-Rise Buildings Considering the Construction Sequence and the Inelastic Behavior (시공 단계 및 비탄성거동을 고려한 초고층 건축물의 3차원 해석 기법 개발)

  • Yang, Joo-Kyoung;Seol, Hyun-Cheol;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2008
  • With consideration of the ongoing construction of high-rise buildings, it is becoming increasingly important to be able to accurately predict the behavior of them on the stage of design, construction and service. Even though many researchers have developed the analysis method to predict the behavior of high-rise buildings, their studies were based on the two dimensional frame structures composed of line elements such as beams and columns. Recently the high-rise buildings with flat-plate system is widely used because of its advantages. In this study a three dimensional analysis method is developed to analyze the behavior of the high-rise buildings with flat-plate system since it is difficult to model the structural systems reasonably with the existing two dimensional analysis method. The analysis method considered the construction sequence including the temporary work such as installation of form, removal of form, installation of shore, and removal of shore. Line elements were used to describe columns, beams, and shores and plate elements were used to model slabs. The creep and drying shrinkage of concrete were also considered to account for the inelastic behavior of concrete.

Evaluation and Application of Dynamic Soil Properties for SSI Analysis (지반-구조물 상호작용해석시 동적지반특성의 평가 및 적용)

  • Lee, Myung Jae;Shin, Jong Ho;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.103-112
    • /
    • 1990
  • This study examines the characteristics of soil behavior which includes many uncertainties in seismic design, evaluates the dynamic soil properties and studies the soil-structure interaction to generalize the applicability and economy of the available sites. An example analysis is performed for soil-structure system response assuming a containment structure built on site which includes soil layers using both elastic halfspace analysis and FEM analysis against the seismic loads from the actual design. This exercise is performed as a part of the safety analysis and economic assessment of the nuclear power plant built on soils. It includes the preparation of computer program capable of incorporating large nonlinearity in the analysis, resonable evaluation procedures to determine input soil data. Nonlinear FEM analysis of Seed and Idriss model is found suitable for the accurate analysis of dynamic response of soils. Linear FEM analysis using dynamic soil properties at strain level obtained by one-dimensional seismic response, and elastic half-space analysis using dynamic soil properties at strain level under static loads are recommended to evaluate the dynamic soil properties.

  • PDF

Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test (동적 원심모형실험을 이용한 풍화토 지반에 놓인 얕은기초 시스템의 지진 시 회전 거동 특성 평가)

  • Ha, Jeong-Gon;Jo, Seong-Bae;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.5-16
    • /
    • 2017
  • Rocking behavior of shallow foundation during the earthquake can reduce the seismic load of the superstructure. The dynamic centrifuge tests were performed to investigate the availability of using rocking behavior for the weathered soil condition. The centrifuge test model was composed of the weathered soil, shallow foundation and single degree of freedom structure. And the accelerations of soil, foundation and structure, and the foundation settlement were measured during the earthquake. From the test result, the seismic load of the structure for the strong earthquake input was reduced by the rocking behavior with foundation uplift and the maximum foundation settlement was less than 0.5% of the foundation width. This shows the potential that the rocking foundation concept can be used in the economical seismic design of foundation for the weathered soil in the future with additional research and verification.

Dynamic Response Analysis of Slender Marine Structures under Vessel Motion and Regular Waves (파랑 및 부유체 운동을 고려한 세장해양구조물의 동적 거동 해석)

  • Chung Son Ryu;Michael Isaacson
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 1998
  • Dynamic response analysis is carried out for slender marine structures such as tensioned risers and tethers of tension leg platform, which are subjected to floating vessel motions as well as environmental forces arising from ocean waves. A mumerical analysis procedure is developed by using finite element model of the structural member. Dynamic analses are performed in the time domain for regular waves. Parameter studies are carried out to highlight the effects of surface vessel motions on the lateral dynamics of the structures. Example results of displacements, bending stresses are compared for various in water depth, environmental condition and vessel motion. Some instability conditions of the structures due to time-varying tension by vessel heave motion are discussed through the example analyses. As the results, the interaction between vessel surge and heave motions amplifies the total structural response of a riser. In the case of a tether, the effect of vessel heave motion during heavy storm is seemed to be quite significant to lateral response of the structure.

  • PDF