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Dynamic Response Analysis of Slender Marine Structures

under Vessel Motion and Regular Waves
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Abstract ] Dynamic response analysis is carried out for slender marine structures such as tensioned risers and
tethers of tension leg platform, which are subjected to floating vessel motions as well as environmental forces
arising from ocean waves. A numerical analysis procedure is developed by using finite element model of the
structural member. Dynamic analyses are performed in the time domain for regular waves. Parameter studies
are carried out to highlight the effects of surface vessel motions on the lateral dynamics of the structures.
Example results of displacements, bending stresses are compared for various cases in water depth,
environmental condition and vessel motion. Some instability conditions of the structures due to time-varying
tension by vessel heave motion are discussed through the example analyses. As the results, the interaction
between vessel surge and heave motions amplifies the total structural response of a riser. In the case of a tether,
the effect of vessel heave motion during heavy storm is seemed to be quite significant to lateral response of
the structure.

Keywords : slender marine structure, vessel motions, regular wave, finite element method
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1. INTRODUCTION ponse of deep-ocean pipe system to axial bottom

vibration and ship motion. This research is highlighted

Many numerical analyses have been carried out on on axial vibration and torsion using 3-D nonlinear
the dynamics of long-cylindrical pipe, and various finite element model considering large deformation of
experiments were performed to verify the numerical structural member. Patel and Sorahia (1984) reported

results. Chung et al. (1994) reported 3-D coupled res- finite element analysis of riser in frequency domain and
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(a) riser (b) tether (¢ finite element
model
Fig. 1. Slender marine structures and its finite element
model.

time domain. This study considered vessel surge
motion as well as wave and current loading. On the
other hand, the problem of parametric excitation, i.e.
time-varying tension variation on the top of structure,
has been reported in many articles (Hsu, 1975;
HaQuang and Mook, 1987; Thampi and Niedzwecki,
1992; Park, 1994). Park (1994) reported the effect of
vessel surge and heave motions on lateral dynamics of
TLP tether by using analytic approach of continuous
model. Yun er al. (1996) discussed the effect of vessel
motions as a part of analysis and design methodologies
for TLP.

The long-cylindrical marine structures such as risers,
TLP tendons as shown in Fig. 1 are subjected to
excitations due to vessel surge and heave motions as
well as environmental forces. When vessel surge
motion is considered together with lateral wave forces
in the dynamic analysis of the slender structure, it
becomes forced vibrations or a forcing excitation
problem. On the other hand, vessel heave motion
causes tension variation on the slender structure. When
the heave motion, which causes time-varying axial
force on the structure, is considered together with
lateral wave forces, the resulting motion becomes
parametrically excited vibration (the Mathieu stability
problem; Stoker, 1950), i.e. structural properties such
as stiffness vary with time (Hsu, 1975; Park, 1994).

When surge and heave motions of the floating vessel

are considered simultaneously, which is more practical,
the dynamic behavior of slender structure becomes a
combined forcing and parametric excitation problem.
The responses of the structures due to combined
excitation would be most dominant.

In this study, a numerical technique which may
account efficiently for the combined excitation in
dynamic analysis of tensioned slender marine structures
is developed by using finite element model, and relying
on parameter studies, i.e. for the various cases in water
depth, environmental condition and vessel surge and
heave motions the dynamic behaviors of riser and
tether of tension leg platform are analyzed. The dyna-
mic analysis is carried out in the time domain for
regular waves in this study, and the analysis has an
emphasis on the effect of vessel heave motion to the
lateral dynamics of riser and tether. It is noticed,
however, that in some cases heave motions of a vessel
do not influence the riser boundary condition and
tensions because of the use of heave compensating
devices such as tensioner and slip joint (Kozik ef al.,
1990). The present study is an extension of the
previous research works by Patel and Sorahia (1984)
and Park (1994) in the analysis methods by considering
the effect of tension variation due to vessel heave
motion and by using discrete model, respectively. The
discrete model is more available in considering spatial
variation of axial tension, lateral load and structural

properties along the structural length.

2. BASIC EQUATIONS OF MOTION

A slender structure has the characteristics of beam-
column which has not only bending stiffness but also
geometric stiffness which is a function of deflected
geometry and the axial force on the member. The
governing equation of motion of the structure has been

derived in previous researches as:
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where x=horizontal deflection; z=vertical distance
from bottom; m =mass per unit length of the member,
including inner contents; ¢ = damping coefficient of the
member; EI=flexural rigidity; 7T=1ocal effective tension
force; f=lateral wave force per unit length of the
member. In this study, steady deflection due to current,
wind, etc. is not accounted for.

The local effective axial tension, T(z, f) is calculated
by accounting for the modification due to hydrostatic

pressures in the surrounding fluid as follow.

T(e.1)=T,+T()~[ow(2dz +p, @A, @) -p, @A) (2)

where T, represents mean top tension, ie. top tension
at still water; T(¢) is tension variation in time, which
results directly from heaving motion of floating
structure; w is weight in air per unit length of the
structure, excepting inner fluid weight if any; p,, p; are
external and internal local hydrostatic pressures,
respectively; A, A; are outer and inner cross-sectional
areas of the structure, respectively; L is total length of
structure.

Since the diameter of structure is much smaller than
wave length, the hydrodynamic loading per unit length
of a cylindrical member due to ocean wave is evaluated
using the modified Morison equation (Sarpkaya and
Isaacson, 1981).

v__ a_x
ot

£z, £)=0.5pC,D, [v— %]
3

2.

av X
+pAe (Cm ? "Ca 812 ) (3)

where D, A, are effective external diameter and
effective area of the cross section; v is the horizontal
local component of water particle velocity; p is mass
density of sea water; C,, C,, and C, are drag coefficient,
inertia coefficient and added mass coefficient of fluid

dynamics, respectively.

3. FINITE ELEMENT ANALYSIS

The two dimentional beam element model is used to

describe the structural properties in this study. In the

formulation of beam element mass matrix, the lumped
mass or the consistent mass approach may be used. In
this study the lumped mass formulation is chosen for
simpler definition of element properties. The vertical
displacement of the structure is assumed sufficiently
small to neglect the vertical dynamics of structural
mass, but the tension varition in the structure due to
vessel heave motion is considered in the horizontal
force equilibrium of the structure. It is assumed that the
time-varying axial force is sinusoidal and constant
along the structural length.

Figs. 1(a) and 1(b) show typical slender structures
incorporating the boundary condition at top end which
must follow the motions of surface vessel. The motions
of vessel may be simulated by using previous reports
(Yeo and Pyun, 1985), and these are assumed to be
known by pre-process in this study. The known hori-
zontal nodal translation at the surface may be separated
from all the unknown degree of freedom, or instead a
virtual force required to cause the specified motions at
the surface can be applied. In this study, this virtual
force, Fy, is used together with a virtual mass-spring
system of which the mass m,, and the stiffness &, are
sufficiently large as shown in Fig. 1(c). If the horizon-
tal motion of surface vessel, xy is assumed to be
harmonic with amplitude a and circular frequency ®, it

is represented as:
xy(t)=a sin(Ot + ¢,) 4)

where ¢, is the phase angle between wave and vessel
horizontal motion. It is noted that ® is same as wave
frequency. For the horizontal virtual mass-spring sys-
tem responding in Eq. (4), adopting a spring constant
sufficiently large, the horizontal virtual force can be

obtained from the vessel motion as:

Fy(£)=Fs()+Fp () +Fy(t) ®)

where F; is the spring force, F), is the damping force
and F,, is the inertia force of the virtual mass-spring
system, which are obtained using Eq. (4).

The effect of vessel heave motion is represented as

tension variation in structural member. If the heave
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motion is assumed to be harmonic with amplitude b
and circular frequency ®, the tension variation, 7(), is

obtained as:
T(t)= Koo {0 sin (&t + ¢,)} =ssin (@Dt + p,) (6)

where, s is amplitude of tension variation; ¢, is phase
angle between wave and vessel heave motion, and Ky,
represents equivalent axial stiffness for total structural
length. Then, the ratio of amplitude of tension variation

to mean top tension is defined as:
R=s/T, M

The ratio of tensions may be used in parame’er study
for the effect of tension variation on the lateral dyna-
mics of slender structures. In the case of TLP, there is
additional tension variation due to vessel pitching mo-
tion, which may increases the ratio of tensions in Eq. (7).

The phase angle between horizontal and wvertical
motion of wave particle is 90 degree. In general, the
horizontal period of floating structure such as TLP,
semi-submersible or floating production system is
larger than wave period. On the other hand, the vertical
period of floating structure may be larger or less than
wave period. On this basis, the phase angle between
vessel horizontal motion and vertical motion is assu-
med to be +90 degree approximately in this study. It
is noted, however, that in some cases these assump-
tions may not be valid due to the slip condition at top
of riser.

Based on Eq. (1), the equation of motion of a
multiple degree of freedom system may be written in
global description as:

[M]{X}+[C]{X}+[K(t)]{X}={Fw(t)}+{1}FH(t)(8)

where, [M]=mass matrix, including added mass; [C]=
structural damping matrix; [K]=stiffness matrix; X, X, X =
horizontal displacement, velocity and acceleration of the
structure, respectively; {1} is a constant vector which has
1 for the lateral degree of freedom at top node, and O for
others; {F,}=nodal wave force vector; F, is virtual
horizontal force defined by Eq. (5).

The stiffness matrix in Eq. (8) is the sum of elastic

stiffness and geometric stiffness due to axial tension as

below.
[K(@)]=[K, ] +[Kro] +[Kr)] ®)

where [K,] denotes elastic stiffness; [Kp] and [Kp,] are
geometric  stiffness contributed by 7, and T(),
respectively. It is noted that since axial deformation of
element mass is not considered in this study, the time
varying tension is consistent in all elements depending
on the time varying top tension, but the mean tension
varies in space due to buoyancy and gravity weight of

upper elements as indicated in Eq. (2).
4. SOLUTION OF EQUATION

The governing equation of motion (8) is nonlinear in
hydrodynamic loading, and the nonlinearity is con-
cerned with hydrodynamic damping. Although the
stiffness matrix is time varying, it does not depend on
structural response. On this basis, Eq. (8) is rewritten
as follows for use of modal analysis relying on average

stiffness.
[MUX }+[CUX } +[K, +Krl{X}
== [Kr WX} H{Fu O} +{1}F, ()=F(X,1)  (10)

Using undamped free vibration modes which may be
obtained from [M] and [K,+Kp)], the responses are
evaluated approximately in terms of generalized coor-

dinates, as follows.

XOr=[PHq ()} (1)

where, [@] is (nX]) matrix of free vibration modes for
n-degree of freedom system, which is normalized to
have all generalized masses get unity ie. [®]'[M][D]=
[1]; g represents generalized coordinate; ! is total
numbers of modes used. It is noted that the lowest a
few natural frequencies and corresponding modes are
used, and thereby reducing unknowns to carry out the
analyses effectively. Substituting Eq. (11) into Eq. (10),
and pre-multiplying [®]’, and assuming uncoupled
structural damping with damping ratio &, the following

equation which is coupled in loading term only is
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obtained.
{g}+[25 0 g} +[e¢l{q} =[P {F (X, 1)} 12

where, o, is k-th natural frequency. It is noted that
since structural damping is generally small with respect
to hydrodynamic damping, the second term in Eq. (12)
may be effectively represented by using small structural
damping ratios. Solution of the nonlinear Eq. (12) can
be obtained by Newmark-B method, or by Runge-Kutta's
numerical integration method. In this study, a numer-
ical integration program HPCG is used to solve the
nonlinear equation, which is based on Runge-Kutta's
method and is one of IBM application programs (IBM,
1970). From the solution of Eq. (12), the displacements
are obtained by Eq. (11), and member forces and stres-

ses by nodal displacements.
5. EFFECTS OF VESSEL MOTIONS

To carry out parameter studies efficiently, it is
necessary to have an insight into the problems involved
in vessel motions by using analytic solutions for a
quite simple model. Here is considered the response of
a slender structure of uniform cross section, which has
hinged boundary conditions at both ends. Neglecting
structural damping and variation of mean tension along
structural length, the governing differential Eq. (1) is

rewritten as:

m% +EI% —(To+ T(t))—gzz—’; =ful(z,t) (13)
The partial differential Eq. (13) may be reduced to an
ordinary nonlinear differential equation by using the
method of separation of variables (Clough and Penzien,
1975). The modes of motion are readily reduced to a
rigid body mode and sinusoidal elastic response modes.
An approximate solution to Eq. (13) is written in the
form as (Park, 1994):

XG@, t)=xH(t)% +iq,, (t)sin % (14)
n=1

The horizontal motion of vessel is defined as Eq. (4),

and axial tension variation in time as Eq. (6), and
considering 90 degree phase angle between horizontal
motion and vertical motion, the prescribed motion and

tension are
xy(t)=a sin(@t), T{t)=s cos(wt) (15)

Substituting Eqgs. (14)-(15) into governing Eq. (13), and
-multiplying m-th elastic mode to this and integrating
over structural length leads to the following non-dimen-
sional modal equations.

2
dd—qT;’+a,,(1 + B cos Dgn =—(—1)"—Zi7c sinT

+2j: fute, Bsin 2 4z (16)

where, T=0t, and
O =(n /0, Pu=0ws/[To+El(n /LY an

®, in Eq. (17) is natural frequency of n-th elastic mode.
If the right hand side of Eq. (16) is not considered, it
becomes well-known Mathieu equation (Stoker, 1950).
When certain conditions on ¢, and P, are met, in this
case, the trivial solution ¢,=0 is unstable and the
response ¢, becomes unbounded. However, since the
quadratic nonlinear hydrodynamic damping term exists,
even unstable solutions are limited in amplitude. The
solution of Eq. (16) depends on frequency ratio o,
strength of parametric excitation B, and strength of
forcing excitation a. On this basis, parameter studies on
®, L, s/T, and a will be carried out through example

analyses on a typical riser and TLP tethers.

6. EXAMPLE ANALYSIS AND
DISCUSSION

Time domain dynamic analysis is carried out using a
regular wave with period of 8.5-13.7 s and wave height
of 7-18 m. It is noted that the current effect is not
considered in this study in order to analyze the
dynamic response of structure to wave and vessel
motions more efficiently. For an example analysis in

this study, a hypothetical riser with a virtual mass-
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Table 1. Riser model data for example analysis.

water depth: 300 m
riser length: 300 m
-outer diameter: 0.5 m
-wall thickness: 0.017 m
-Young's modulus: 2.1 X 107 t/m’
-weight density: 7.85 #/m’
density of sca water: 1.025 t/m’
effective diameter for wave load: 0.8 m
drag coefficient: 1.0
inertia coefficient: 2.0
top tension: 180 tons
top virtual mass: 1.8 % 10 t.5°/m
-virtual stiffness: 9 10° ¢/m
-virtual damping: 10%
vessel surge amplitude: S m
vessel surge phase angle: 15°

spring system in water depth of 300 m is adopted.
Table 1 gives the input data for parameter studies of
this example. It is noted that the stiffness of virtual
mass-spring system should be sufficiently large to neglect
the lateral stiffness of structural elements. Also, the
virtual mass should be sufficiently large to make sure
that the natural frequency of single-degree virtual mass
is identical to the smallest one of multi-degree struc-
tural system. By undamped free vibration analysis, first
five natural frequencies are calculated as o, = 0.223 rad/s,
®, =0.5027 radfs, w;=1.022 rad/s, w,=1.570 radfs, ws=
2.162 rad/s. It is noted that ; is in sway mode which
responds to vessel surge motion and contributes signi-
ficantly to lateral displacement of riser. Meanwhile, ,
and higher frequencies are in flexural mode which
contribute significantly to bending stress of the struc-
ture. Table 2 displays the three wave conditions; those
are moderate, severe and extreme wave conditions with
comresponding maximum wave heights and periods
chosen empirically. It is noted that the basis of these
analyses is the severe limited condition with wave height
10 m, wave period 10.5 s.

Park(1994) reported a numerical result on long-

Table 2. Wave conditions for parameter study.

moderate severe extreme
wave height 7m 10m 18 m
wave period 85s 105 s 13.7 s

cylindrical marine structures subjected to forcing,
parametric and combined excitations, in which forcing
excitation means vessel surge motion input; parametric
excitation is vessel heave motion input; and combined
excitation is surge and heave motion inputs. On the
other hand, instability regions are decided by o and
values which depend on input period and strength and
structural physical data as can be seen from Eq. (17).
As a bench mark for the result of the riser example,
here introduced an artificial instability condition at o.=1
and B=1 in the second vibration mode using appro-
priate input frequency and tension variation, which falls
in the second instability region of the Mathieu stability
chart. It is noted that the case of B=1 is not realistic
considering the working of tensioner at the top of riser.
Fig. 2 shows comparisons between forcing, parametric
and combined excitations for the displacement at mid
point of structure. These comparisons give an interes-
ting point, as can be seen also at Park (1994), that even
though the responses to forcing and parametric excita-
tions are small, the response to combined excitation is
much larger than that to the separate excitation. This
result means that the interaction between forcing and
parameter excitation is significant in increasing the total
response. It is noted that since the parametric excitation
in the forcing term at Eq. (10), [Ky,]{X}, is a function
of response {X}, the effect of this interaction would be
significant.

Fig. 3 shows response configurations according to
the three top end boundary conditions: one is no vessel

motion, another is vessel surge input, the other is

E 3
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Fig. 2. Displacememt time histories as to different exci-
tations to a riser.



70 Chung-Son Ryu and Michael Isaacson

350

Distance from Bottom, (m)

—<&—Wave only
—H8—Wave+Surge|

—A—Wave+Surge|
+Heave

0 10 20 30 40 50
Bending stress, (N/mm2)

Fig. 3. Bending stresses of a riser as to various excita-
tions.

vessel surge and heave inputs. The wave condition is
severe wave. The amplitude of sinusoidal tension
variation is assumed to be 40% of mean top tension. It
can be seen that vessel motion inputs at the top end
give severe changes in the distribution of bending
stress, and it seems that most of the changes result
from vessel surge motion. It can be seen also that
about 40% of bending stresses are additionally super-
posed in the upper part of the structure by vessel heave
motion. These imply that time varying vessel heaves as
well as vessel surge motions should be considered in
the same time for the effective dynamic analysis of
marine risers. However, it is noticed that in some cases
heave motions of a vessel do not influence the tensions
due to the use of heave compensating devices (Kozik
et al., 1990).

Another example is analyzed by using a typical
tether system of a TLP. Table 3 gives physical data for
the tether. TLP tether is a kind of long-cylindrical
marine structures, but has some special characteristics.
The worst sea state is an important environmental con-
dition for design of a tether. Such heavy storm essen-
tially creates large heave and pitching motions of a

TLP, and then high time- varying tension. TLP gets

Table 3. Tether model data for example analysis.

tether length: 510 m
-outer diameter: 0.6 m
-wall thickness: 0.02 m
top tension: 380 tons
virtual mass: 1.8 10° £.s%m
virtual stiffness: 9% 10° ¢/m

500 .
~A e
A »
A ¥
400 Ao
E
£
£
2 300
5
&
1
$
g 200
b --4--T=85s
— -A— T=105s|
—e—T=137%
100
o] + +
-120 -80 -40 0 40 80 120

Bending Stress, (N/mm2)

Fig. 4. Bending stresses in a tether as to wave periods.

interests in deeper water exploration due to relative low
cost. On these view points, this example of a typical
tether system is highlighted on large tension variations
and deep water cases. It is noted that for a given
structure the stability parameters o and B result
eventually from wave period and height. For slender
deep water structures B/o. can be approximated to s/T,
which is the ratio of tension variation to mean top
tension. As seen in Mathieu stability chart (Stoker,
1950), when becomes small, i.e. o approaches to zero
the possibility for a slender structure to meet instability
condition is high. However, is increased in heavy storm
condition. A parameter study is carried out in wave
periods of T=8.5s, 10.5s and 13.7 s typically. Fig. 4
shows bending stress configurations of maximum
positive and negative peaks, which is intended to show
the sensitivity of structural response to o. For all the

wave period conditions, wave height of 10 m, vessel
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Fig. 5. Bending stresses in a tether as to tension varia-
tions.

surge amplitude of 5 m and s/T, are applied. It can be
seen that although the three input period cases are quite
different in the expression of response configurations
the differences of maximum values are not so signi-
ficant, considering appropriate wave heights. Fig. 5
shows response configurations according to three cases
of slight different tension variations. It is noted that
wave height of 10 m, period 10.5s and vessel surge
amplitude of 5 m are assumed for all the three cases in
convenience. It can be seen that the differences of
maximum responses are very significant, and the effect
of parametric excitation is very sensitive to the strength
of parametric excitation around s/T,=1.0 which may be
considered in heavy storm condition. So, the worst sea
state is an important environmental condition for the
investigation of the effect of parametric excitation.
Another parameter study for the effect of parametric
excitation is made using four different tether lengths
according to water depth. All the physical data are
same as those in Table 3, except the length of tether
and mean top tension. The tether lengths are varied
from 500 m to 2000 m, but mean top tensions are
assumed to be same by 500 tons for all cases and all
the members in a tether. Extreme wave condition given

in Table 2 is applied. Fig. 6 shows maximum bending

300

250 —e—L=500m
— 0 — L=1000m|
- - & - -L.=1500m

200 4 — {F - L= 2000m|

Maximum Bending Stress {(N/mmz2)

s/To

Fig. 6. Maximum bending stresses as to tether lengths and
tension variations.

stress according to tether length , and as to strength of
parametric excitation s/T, which can be approximated
to B/o due to deep water condition. The response ampli-
tudes are increased as a whole as the smaller length of
tether. These results are due to the characteristics of
dynamic response to combined excitation in individual
instability regions according to each L and s/T;. Ano-
ther interesting point that can be seen from the Figure
is that when L is 1000 m or less, the maximum respon-
ses are catastrophically amplified on high s/T,. With
s/Ty=1.0, the case of L=500m falls in the second
instability region and the case of L=1000m falls in
the first instability region. But, in the higher water
depth the natural frequencies are reduced and the point
in Mathieu stability chart moves toward zero from the
center of first instability region. Consequently, the
effect of parametric excitation, ie. time-varying axial
force could be neglected for higher water depth than
about 1000 m and vice versa, although the stability
condition should be checked together with the strength

of parametric excitation.

7. CONCLUSION

A finite element model is developed for efficient

dynamic response analysis of slender marine structures
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which are subjected to excitations by vessel surge and
heave motions as well as by waves. Dynamic analyses
are performed in time domain using regular waves.
Parameter studies are carried out to highlight the effects
of vessel motions on the lateral dynamics of slender
marine structures. Example results are compared for
various cases in water depth, wave condition and
vessel motion. In case of riser, bending stresses bec-
ome severe in overall height by vessel surge motion.
By the effect of vessel heave motion, bending stresses
are amplified in the upper part. As the results, the
interaction between forcing and parametric excitation is
significant, and then the total response is quite increa-
sed. In case of tether of TLP, the structural response is
more sensitive to wave height rather than wave period,
even though the possibility to fall in unstable region is
higher under smaller period of wave. TLP is competent
in deeper water in general, and the natural frequencies
are very small. From a parameter research in this study,
the effect of parametric excitation is seemed to be quite

significant to lateral response of a tether.
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