• Title/Summary/Keyword: 구속수축

Search Result 80, Processing Time 0.022 seconds

Tensile Behavior of Reinforced Concrete Member due to Restrained Shrinkage (구속된 건조수축이 철근콘트리트 인장거동에 미치는 영향)

  • 안태송;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.315-320
    • /
    • 1998
  • The experimental set-up and one-dimensional analytical model have been developed to investigate the tensile behavior of reinforced concrete member due to restrained drying shrinkage. The experimental results have been compared with the analytical prediction of the maximum residual stress of steel and concrete due to restrained shrinkage. The tensile residual stress concrete by one-dimensional bilinear model shows 0.19 and 0.63 of tensile strength for 0.83% and 3.29 of steel ratio. The residual tensile stress of concrete increases as the steel ratio increases. The effect of steel fiber has not influenced the residual stress due to restrained shrinkage of concrete.

  • PDF

Mechanism and Effects of Welding Residual Stress -Mechanism of Welding Residual Stress- (용접잔류응력의 생성 메카니즘과 그 영향(I) -용접잔류응력의 생성 메카니즘-)

  • 박정웅
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.1-2
    • /
    • 2004
  • 강구조물 제작시 용접프로세스에 의해 용접부 근방에서는 용접열원에 의해 급속가열ㆍ급속냉각의 열 사이클을 받으며, 열원의 이동과 함께 온도장이 변화하므로 용접부에 불균일한 온도분포가 발생된다. 이러한 불균일한 온도분포에 의한 용접부 근방의 열팽창ㆍ수축을 용접부로부터 떨어져 있는 저온상태의 부재가 이를 구속하여 결과적으로 용접변형과 잔류응력이 발생한다.(중략)

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Estimation of Shrinkage Behavior and Stress of Expansive Concrete on Buildings (실부재에 있어서의 팽창콘크리트의 수축거동 및 응력예측)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi;Hama, Yukio
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, Based on the constructed model in advance, we suggested the macro prediction method of shrinkage cracking reduction in concrete using expansive additives, and the method was verified. In addition, extended application of model to building, the strain of walls and slabs on building was estimated by model and the generated stress was estimated thereby comparing this with the result by existing method to verify the model's applicability and the validation of our model. From examination of theoretical model for concrete using expansive additives to examination for building levels, furthermore suggests the macro prediction method for shrinkage reduction and cracking control effects was can be supply practical data in application of expansive concrete and utility in the future.

A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구)

  • 오병환;이명규;유성원;백상현
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.151-161
    • /
    • 1996
  • Recently, polypropylene fiber reinforced mortar and concrete as civil and architectural materials have been used in major countries in the world. Polypropylene fiber reinforced concrete has many advantages in terms of economical aspect, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. The purpose of the present study is, therefore, to investigate the strength as well as many mechanical characteristics including toughness and shrinkage control properties. A specially devjsed shrinkage test has been applied to measure the crack control characteristics of polypropylene fiber reinforced concrete. The present study indicates that the polypropylene fiber reinforced concrete curbs greatly the crack occurrence due to shrinkage and enhances toughness resistance. The present study provides a firm base for the efficient use of polypropylene fiber reinforced concrete in actual construction such as pavements and slab structures.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Strength and Crack Resistance Properties of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성)

  • Kim, Sung-Bae;Kim, Hyun-Young;Yi, Na-Hyun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The main objective of this study was to evaluate the effect of recycled PET (RPET) fiber made from waste PET bottles to examine application on concrete member. To evaluate the reinforcement effect of RPET fiber in concrete member, experimental tests were performed, such as mechanical property tests (compressive strength, modulus of elasticity and splitting tensile strength) and drying shrinkage test. In mechanical property tests, compressive strength and modulus of elasticity in concrete mixed with RPET fiber gradually decreased, but splitting tensile strength gradually increased as volume fraction of fiber increased. In drying shrinkage test, free drying shrinkage increased. In restrained case, in contrast, crack occurrence was delayed because of tensile resistance increase by RPET fiber. The comparison of RPET and PP fiber added concrete specimen's properties showed that two materials had similar properties. In conclusion, RPET fiber is an alternative material of PP fiber, even finer for its excellence in eco-friendliness due to the recycling of waste PET bottles and its possible contribution to the pollution declination.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

A Proposal of Autogenous Deformation and Self-induced Restrained Stress Test Using Thermal Analysis Results to Predict Early-Age Cracks of Externally Restrained Concrete Members (외부구속 콘크리트 부재의 초기균열 예측을 위해 온도해석 결과를 이용한 자가변형 및 구속응력 측정 실험의 제안)

  • Byun, Jong-Kwan;Kang, Won Ho;Kang, Jeong-Kil;Bae, Seong-Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • It is difficult to predict the early-age cracks of strain restrained concrete members due to environmentally sensitive parameters. A new method is proposed to predict the cracks by test of autogenous deformation and self-induced restrained stress of specimens which simulates early-age crack state by hydration heat of the'Wall-On-Foundation'members. For this purpose, thermal analysis of entire structure considering the environmental condition is performed at first, and the specimens are set up where hydration heat was electronically controlled according to the analysis results. By measuring free deformation and force to compensate the autogenous strain including relaxation, feasibility of cracks can be estimated. The proposed method can predict the occurrence of cracks better than the material test of the early age concrete which has large variance. The method of this study is particularly useful when it is used as a preliminary experiments to predict the crack more precisely before full-scale concrete placement in construction of large structures.