• Title/Summary/Keyword: 구면반경

Search Result 33, Processing Time 0.019 seconds

The Study about Measuring Method in Radius of Eyeglasses Lens Curvature by using Keratometer (각막곡률계를 이용한 안경렌즈 곡률반경 측정방법에 관한 연구)

  • Cha, Jung Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Perpose: The aim of this study is to investigate the measuring method in radius of eyeglasses lens curvature by using keratometer in noncontact method. Methods: A trial lens for vision test in diopter range from -9.00 D to -11.50 D were attached in front part of keratometer, after that we set eyeglasses lens at the place where eyeglasses lens is apart about 25 cm from front position of keratometer. We measured the radius of curvature from observation of clear mire image while the position of eyeglasses lens is changed in a small quantity. After that, we made some formulas for compensation of radius of curvature by using spherometer. Results: The radius of curvature was successfully measured by keratometer with trial lens in front part of it. The measured radius of curvature was changed to compensation value using spherometer data, and the 5 kind of linear equation to make compensation value was made. Any kind of lenses measured by using keratometer that trial lens was attached in front part of it, after that it was confirmed that the result of calculation from line equation is exact in error ratio below 3.5%. Conclusions: It was confirmed that radius of eyeglasses lens curvature can be measured by using keratometer by noncontact method, and the accuracy is higher than "lens measure".

Optimum design of the finite schematic eye using spherical aberration (구면수차를 이용한 정밀모형안의 최적화)

  • 김상기;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.266-271
    • /
    • 2002
  • The finite schematic eye based on spherical aberration and Stiles-Crawford effect is designed by an optimization method. It consists of four aspherical surfaces. The radius of curvature, thickness, asphericity, and spherical aberration are used as constraints in the optimization process. Stiles-Crawford effect in the pupil is considered as a weighting value for optimum design. The designed schematic eye has effective focal length of 20.8169 mm, back focal length of 15.4820 mm, front focal length of -13.8528 mm, and image distance of 15.7150 mm. When the pupil diameter is 4 mm, the diameter of entrance pupil and exit pupil are 4.6919 mm and 4.2395 mm, respectively. From the data of 75 measured Korean emmetropic eyes, this finite schematic eye is designed first in Korea.

Study on nano-level mirror surface finishing on mold core to glass lens molding (유리렌즈 성형 금형의 나노 경면가공)

  • Kwak, Tae-Soo;Kim, Cyung-Nyun;Lee, Yong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.97-104
    • /
    • 2006
  • ELID(Electrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study is describing an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould. It also presents some techniques for achieving the nanometer roughness of the hard metals, such as WC-Co, which are extensively used in precision tooling material.

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components (구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.269-280
    • /
    • 2016
  • I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

대칭 및 비대칭 binary filter가 수차를 포함한 광학계의 축상 GAIN에 미치는 영향

  • 최기준;정창섭;심상현
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.165-171
    • /
    • 2001
  • We discuss the influence of annular binary filters on the axial PSF of imaging systems which are apodized by a radiallysymmetric filter and have spherical aberration and coma. In this paper we consider a whole family of annular binary fIlters in two cases. First, the binary filters are composed of two transparent annuli of the same area. Second, the binary filters are composed of a central clear circle and a concentric annular aperture with area bigger than that of the inner circle. In order to investigate the influence of the proposed filters on the axial PSF, we may use the axial resolution gains, which evaluate in terms of the FWHM of the intensity in the focal region of an apodized imaging system in comparison with that corresponding to a nonapodized one. We evaluate the PSF for the conventional and confocal systems having an aberration. ation.

  • PDF

Optical constant of the reduced eye based on theoretical finite model eye (이론적 정밀모형안에 기초한 환산모형안의 광학상수)

  • 김상기
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.268-273
    • /
    • 2004
  • A finite model eye based on longitudinal spherical aberration is designed by an optimization method. Longitudinal spherical aberration for pupil diameter between 1 mm and 8 mm is graphed theoretically and compared with other model eyes. The chromatic dispersions are adjusted to fit experimentally observed chromatic aberration of the eye. This is a finite model eye with four a spheric refracting surfaces. It has an effective focal length of 15.842 mm. A designed reduced eye has an equivalent power of 63.12 Diopter, curvature radius of 5.281 mm, index of 1.33333, and axial length of 21.123 mm.

Verification for transcription of spherical radius and prediction of birefringence in injection molding optical lens (초정밀 광학렌즈의 복굴절 예측과 금형 전사성)

  • Ohmori Hitoshi;Kwak Tae Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.55-60
    • /
    • 2005
  • This paper has been focused in developing of plastic lens with ultra-precision and low birefringence ability using by injection molding simulation tools. The simulation tools, $3D-Timon^{TM}\;and\;Asu-Mold^{TM}$ were applied to visualize indirectly the flow pattern of melted polymer enter the mould and the simulation results are verified as compared with the experimental results. Birefringence and polarized light generated in injection molding process was also calculated for each injection conditions and compared with .the pictures of experimented optical lens go through the polarized light plates device. A spherical radius of plastic optical lens transcribed from profile of mould core surface was measured to estimate the geometrical accuracy fer the each injection conditions. It is confirmed that the simulation results about flow pattern and polarized light area coincided in experimental results. It is known that increasing in thickness shrinkage at center of lens, the spherical radius is larger from comparing the graph measured spherical radius and the thickness shrinkage at center of lens

The Performance Analysis and Design of Selling Spectacle Lenses in Domestic Market (국내 시판 안경렌즈의 성능 분석 및 설계)

  • Kim, Se-Jin;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • Purpose: Analysis performance for spectacle lens which sales in domestic market and optimization design a spectacle lens which is corrected aberration. Methods: Measured center thickness, radius and aspherical surface coefficient for spherical and aspherical lenses which were ${\pm}$5.00D. Refractive index for every lens was 1.6 and they came from 4 different companies. I used 3 types of equipment to measure lenses. ID-F150 (Mitutoyo) : Center Thickness, FOCOVISION (SR-2, Automation Robotics) : Radius, PGI 1240S (Taylor Hobson) : Aspherical surface coefficient. Designed a lens which had 27 mm of distance from lens rear surface to center of eye, 4 mm of pupil diameter and small aberration on center vision $30^{\circ}C$. To shorten axial distance compared with the measured lens rise merits for cosmetic. Lens Design tool was CODE V (Optical Research Associates). Results: -5.00D aspherical lens had somewhat high astigmatism and distortion compared with the spherical lens. But it had a merit for cosmetic because of short axial height and decrease edge thickness. Improved a performance of distortion and ascertain merits for cosmetic due to short axial height and decrease edge thickness same as (-) lens in case of +5.00 aspherical lens. Though an optimization process front surface aspherical lens had a good performance for astigmatism and distortion and the merit for beauty compared with measured spherical lens. Conclusions: Design trend for domestic aspherical lens is decrease axial height and thickness to increase a merit for cosmetic not but increase performance of aberration. From design theory for optimization design front surface aspherical spectacle lens which has improved performance of aberration and merit for cosmetic at the same time compared with the measured lens. Expect an improved performance from design back aspherical lens compared with front aspherical lens.

Development of the Best Spherical Interpolation Method for Estimating Potential Natural Vegetation Distribution of the Globe (지구(地球)의 잠재자연식생분포(潜在自然植生分布)를 추정(推定)하기 위한 최적구면보간법(最適球面補間法)의 개발(開發))

  • Cha, Gyung Soo;Ochiai, Kamiya
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • As the first step to estimate the potential natural vegetation distribution of the globe, the best spherical interpolation method was developed to the temperature and precipitation which have close relation to the distribution pattern of world natural vegetation. For developing the interpolation method, a named Light Climatic Dataset composed of 1,060 stations around the globe was randomly divided into halves of feeding side and target side. The discrepancy between the observed and estimated values at the target stations was compared with combinations of parameters and methods. The estimated values were calculated to each combination which is all-out, constant radius and constant station methods in the selection of the feeding stations, n square reciprocal and negative exponential functions in weighting function of distance between feeding stations and each target, and oval weighting in direction of the feeding stations from each target. As a result, it turned out that the spherical interpolation with negative exponential weighting function fed from the constant radius stations ovally weighed yields the best estimates both for temperature and for precipitation. The parameters for temperature are $30^{\circ}$ in constant radius, 0.78 in negative exponential function and 0.4 in oval weighting, and for precipitation are $30^{\circ}$, 0.53 and 0.4, respectively.

  • PDF

Study of Ocular Components in Determining the Refractive State of the Eye (굴절이상을 결정하는 안광학 요소에 관한 연구)

  • Seo, Y.W.;Choe, Y.J.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • The purpose of this study is to evaluate the relationship between ocular components and refractive error for human eye. Ocular components were measured by keratometry, phakometry, and ultrasonography. Refractive error was measured by subjective refraction on 38 subjects aged from 17 to 30. The results were as follows; 1) Refractive error and axial length, vitreous chamber depth, axial length/corneal radius were highly correlated that the correlation coefficients were 0.95, 0.96, 0.95, respectively. 2) Refractive error and corneal radius, corneal power, lens thickness were correlated with the correlation coefficients for 0.60, 0.66, 0.67 respectively. 3) There were no significant correlation between refractive error and corneal thickness.

  • PDF