• Title/Summary/Keyword: 구름 요소 베어링

Search Result 18, Processing Time 0.022 seconds

Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000RPM Operation (10만 RPM용 원심분리기의 로터베어링계 설계)

  • 이안성;김영철;박종권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.64-69
    • /
    • 1997
  • 정격속도 100,000RPM용 원심분리기(centrifuge) 로터베어링계에 대해 회전체동역학 해석이 수행된다. 시스템은 원심분리기 로터, 유연축, 모터 로터와 축, 그리고 모터축 지지용 두 개의 구름베어링으로 구성된다. 설계목표는 정격속도가 위험속도(critical speed)에 대해 충분한 분리여유를 갖고, 위험속도에서 로터의 양호한 불균형응답특성을 이루어 내는 것이다. 후자의 요구조건은, 시스템이 다수의 위험속도를 통과하며 정격속도 주위에서 충분한 분리 여유를 갖지 않을 수도 있기 때문에 특히 중요하다. 시스템에 초유연축(extra-flexible shaft)을 도입함으로써, 비록 1차 위험속도에서 만족스럽지 못한 큰 불균형응답을 가질지라도 고차 위험속도에서 만족스런 작은 불균형응답을 보인다. 1차 위험속도에서 로터의 큰 변위를 억제하기 위해서 범퍼링(bumper ring) 또는 안내베어링(guide bearing)을 유연축의 적절한 위치에 설치할 필요가 있다. 비록 유연축계라 할지라도 정격속도와 가까운 4차 이상의 고차 위험속도를 정확히 규명하기 위해서는 모터의 동역학을 전체시스템에 결합하여야 함을 볼 수 있다. 해석은 유한요소법(finite element method)에 의해 수행된다.

  • PDF

Analytical Theory of Ball Bearing Considering Waviness of Rolling Elements (구름요소의 Waviness 를 고려한 볼베어링 해석 이론)

  • 정성원;장건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.275-286
    • /
    • 2001
  • The research presents an analytical theory to calculate the characteristics of the bal bearing with waviness in its rolling elements considering the centrifugal force and gyroscopic moment of bal. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. and the waviness of rolling elements is modeled by sinusoidal function to calculate the contact force at each ball. The numerical solutions of governing equation of berating due to waviness are calculated by using the Newton-Raphson method. The accuracy of the research is validated by comparing the contact force. contact angle in case of considering the centrifugal force and gyroscopic moment of bal and the contact force and vibration frequencies in cases of considering waviness with the prior researches respectively. It investigates the stiffness, contact force. displacement and vibration frequencies of the ball bearing considering not only the centrifugal force and gyroscopic moment of ball but also the waviness of the rolling elements.

  • PDF

Variation of Operating Clearance Depending on Cooling Methods of High-Speed Roller Bearings for Aerospace Applications (항공용 고속 롤러베어링의 냉각 방식에 따른 작동간극 변화)

  • Jisu Park
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In this study, the expansion, stress, and operating clearance of bearing elements during operation are observed using the inner/outer ring temperature test data of a 3.0×106 DN-class roller bearing. The operating clearance characteristics of inner-/outer-ring cooling (IORC) bearings are compared to those of inner-ring cooling (IRC) bearings. For IRC bearings, the thermal expansion of the outer ring is the most important factor in clearance variation. As a result, the operating clearance is less than the initial clearance of 61 ㎛, and the operating clearance decreases to 0.5 ㎛ at 25,500 rpm. Conversely, the temperature of the outer ring of IORC bearings is lower than that of IRC bearings, so the operating clearance is kept smaller. When the coolant flow rate to the outer ring is approximately 1.5 to 2.0 L/min, the temperature difference between the inner and outer rings is minimized and the operating clearance is maintained at a significantly lower level than IRC bearings. Small operating clearances are expected to be effective in reducing cage slip and skid damage in roller bearings. The results and analysis procedures of this study can be utilized to design of bearing clearance, lubricant flow rate, and assembled interference in the early design stage of aerospace roller bearings.

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Low Speed Rolling Bearing Fault Detection Using AE Signal Analyzed By Envelop Analysis Added DWT (웨이블릿변환이 접목된 포락처리를 이용한 저속 회전하는 구름요소베어링 결함 진단)

  • Kim, Byeong-Su;Kim, Won-Cheol;Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.672-678
    • /
    • 2009
  • Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process.

Application of Blind Deconvolution with Crest Factor for Recovery of Original Rolling Element Bearing Defect Signals (볼 베어링 결함신호 복원을 위한 파고율을 이용한 Blind Deconvolution의 응용)

  • Son, Jong-Duk;Yang, Bo-Suk;Tan, A.C.C.;Mathew, J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.585-590
    • /
    • 2004
  • Many machine failures are not detected well in advance due to the masking of background noise and attenuation of the source signal through the transmission mediums. Advanced signal processing techniques using adaptive filters and higher order statistics have been attempted to extract the source signal from the measured data at the machine surface. In this paper, blind deconvolution using the eigenvector algorithm (EVA) technique is used to recover a damaged bearing signal using only the measured signal at the machine surface. A damaged bearing signal corrupted by noise with varying signal-to-noise (s/n) was used to determine the effectiveness of the technique in detecting an incipient signal and the optimum choice of filter length. The results show that the technique is effective in detecting the source signal with an s/n ratio as low as 0.21, but requires a relatively large filter length.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

The Ultra-Centrifuge Rotordynamics (초고속 원심분리기의 회전체동역학 설계)

  • 이안성;김영철;박종권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.319-323
    • /
    • 1996
  • \ulcorner\ulcorner\ulcorner\ulcorner 80,000 rpm \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(ultra-centrifuge)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(critical speed)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(separation margin)\ulcorner \ulcorner\ulcorner, \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner-\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner(extra slender shaft)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner 1\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner(bumper ring) \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(guide bearing)\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner. \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner(finite element method)\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner, \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner\ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner \ulcorner\ulcorner\ulcorner \ulcorner\ulcorner(damping)\ulcorner \ulcorner\ulcorner\ulcorner\ulcorner.

  • PDF