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ABSTRACT

Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it
became necessary for a proper maintenance schedule that replaces the slewing bearings installed in
massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is
still the primary technique used for dealing with low-speed bearing cases. Few studies employed vi-
bration analysis because the signal generated as a result of the impact between the rolling element
and the natural defect spots at low rotational speeds is generally weak and sometimes buried in
noise and other interference frequencies. In order to increase the impact energy, some researchers
generate artificial defects with a predetermined length, width, and depth of crack on the inner or
outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This
paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode
decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational
speed of 15rpm. The natural vibration damage data used in this paper are obtained from a Korean
industrial company. In this study, EEMD is used to support and clarify the results of the fast
Fourier transform(FFT) in identifying bearing fault frequencies.
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1. Introduction

Most published articles on the topic of slewing
bearings are frequently concerned with using the fi-

5)

nite element method for analysis'™; there is also a

(6’7), and

small amount of work done in oil analysis
even less in vibration monitoring techniques®. A
recent article about slewing bearings as related to
vibration analysis is presented by Zvokelj'*'”. The
method used in Refs.(9), (10) is the ensemble
empirical mode decomposition (EEMD) combined
with  multi-scale principal component analy-
sistMSPCA). An artificial fault is introduced on
the inner ring of the slewing bearing as presented
in Refs. (9), (10). As signal from artificial single
fault is easier to identify than more realistic mul-
tiple fault damage the method is yet to be proven
for practical application. Another report in the lit-
erature used EEMD to study high-speed rolling el-

(19 4]

ement bearings(2100 rpm) with seeded faults
beit the artificial damage is not representative of
real conditions. In this paper, slewing bearing data
without artificial defects are used. EEMD, which
is an improved method of empirical mode decom-
position(EMD), is employed to support and clarify
of the fast

Moreover, two bearing frequencies, BSF and BPFO,

the results Fourier transform(FFT).

that do not appear in the FFT are identified using
EEMD.

2. EMD and EEMD

EMD was first introduced by Huang et al.'".
EMD has been demonstrated to be adaptable in a
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wide variety of applications for extracting signals
from data generated in noisy nonlinear and
non-stationary processes(see, for example, Huang
and Shen” and Huang and Attoh-Okine"”). In
the rolling element bearing case, the rolling elements
contact each other and generate different mode oscil-
lations, which synchronize simultaneously. The main
purpose of EMD is to decompose these signals
into intrinsic mode functions(IMFs), some of
which are bearing fault signals. The EMD method
decomposes the bearing signal x(¢) into IMFs, ¢,

by

x(t)chj +7, 1)
Jj=1

where n is the number of IMFs, c¢; represents the
IMFs, and r, the final residue of data. IMFs are
defined as oscillatory functions with varying am-
plitude and frequency. The frequencies of the
IMFs range from high to low. According to Ref.
(11), an IMF is a function that satisfies the two
following conditions:

(1) Throughout the length of a single IMF, the
number of extrema and the number of times the
function crosses zero must either be equal or dif-
fer by one at most.

(2) At any data location, the mean value of the
envelope is defined by the local maxima and the
envelope defined by the local minima is zero.

The process of decomposing a signal into IMFs
is called the sifting process.

One of the main demerits of the original EMD
is the problems with modes mixing. Mode-mixing

is defined as a single IMF either consisting of a
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signal with widely disparate scales or a similar
signal that resides in different IMF components''?.
The mode-mixing problem is associated with sig-
nal intermittency. Moreover, the intermittency

could cause aliasing in time-frequency dis-
tributions, making the individual IMF lack phys-
ical meaning. To prove the existence of inter-
mittency, Huang et al"” conducted an inter-
mittence test. They found that the intermittency
can be avoided by subjectively selecting appro-
priate scales. With this subjective intervention, the
EMD ceases to be fully adaptive. Thus, to over-
come the scale separation issue without the inter-
ference of a subjective intermittent test, Wu and
Huang(l(’) proposed a noise-assisted data analysis
(NADA) method, namely, EEMD.

In practice, the low-speed slewing bearing sig-
nal has a low signal-to-noise ratio(SNR). This is
due to the impact energy between the rolling ele-
ment and the defect spots, which is generally
weak. This weak vibration signal is buried in
EEMD,

which can be used to cancel out this noise and

noise and difficult to identify. Hence,
extract the bearing signal, is employed in this
study. The term “ensemble” in EEMD refers to
the repeated trial of added noise with a finite am-
plitude into the original time series signal. The
true IMF results are computed from each trial by
taking the mean value of the corresponding IMFs.
The basic principle of cancelling out the noise
from the bearing signal x(¢f) is as follows. The
added white noise distributes uniformly to the
time-scale or time-frequency space with the con-
stituent components of different scales. The added
noise in this case works as a uniform reference
When the

bearing signal is added to this uniform reference

frame in the time-frequency space.
frame, the bits of the bearing signals of different
scales are automatically projected onto proper
scales of reference. Certainly, each individual trial,
which consists of the signal and the added white

noise for its decompositions, may produce noisy

results. Because the noise is different for separate
trials, it is cancelled out in the ensemble mean of
a large enough number of trials. In other words,
the only persistent part that survives in the aver-
aging process is the signal, which is then treated
The principle of EEMD is
described in Ref. (16) as follows.

(1) A collection of white noises cancels out in

as the true result"”.

an ensemble mean; therefore, only the signal can
survive and persist in the final noise-added signal
ensemble mean.

(2) White noise is necessary to force the en-
semble to find all possible solutions; the white
noise makes the different scale signals reside in
the corresponding IMFs and renders the resulting
ensemble mean more meaningful.

(3) The decomposition with a truly physical
meaning of EMD is not without noise; it is des-
ignated to be the ensemble mean of a large num-
ber of trials including the noise-added signal.

According to Wu et al"”® and based on the
principle of EEMD above, the EEMD decom-
position algorithm of the original signal x(¢) can
be summarized in the following steps:

(1) Add the white noise series to the bearing
signal. Note that the number of data points of
added noise is equal to the bearing signal.

(2) Decompose the amalgamation data(the bear-
ing signal plus the white noise) into IMFs until
the smallest frequency is reached. This individual
decomposition is obtained by using the original
EMD method.

(3) Repeat step 1 and step 2 continuously with
a different white noise series.

(4) Obtain the(ensemble) means of the corre-
sponding IMFs of the decomposition as the final
result.

The above steps are illustrated in Fig. 1 and
Appendix A.

To apply EEMD, two parameters should be
determined: (1) the number of ensembles notated
by E and (2) the amplitude ratio between the
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added noise and the bearing signal, which is de-

noted as o.

2.1 Number of ensembles

The relationship among the ensemble number,
the amplitude of the added noise, and the effect
of the added noise can be represented by the fol-
lowing equation, which

has been derived by Wu and Huang"” :

= 22)
= 7= a
JN
or
a
lng+ElnN=0 (2b)
where N is the ensemble number, a is the

amplitude of the added white noise, and ¢ is the
standard deviation of the error, which is defined
as the difference between the input signal and the
corresponding IMFs. Egs. (2a) and (2b) imply that

a small error can be achieved by decreasing the

Bearing signal

[ Iy

—data
Amalgamation data| | -

| ¥ | ,
|| [ona ] [l
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- Compute the

[ . [1 . [ .
[ IMFIJ [¢ IMFIJ [+ IMFIJ
mean of IMFs
Mean Mean Mean Mean -

of of of ... of
18 IMF 2" [MF)| 3“IMF N"IMF
e

EEMD Results

Fig. 1 Illustrations of the EEMD method
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added noise amplitude or by increasing the ensem-
ble number. In an exceptional case, i.e., when the
signal to be analyzed has a large gradient, if the
error is small, it may cause a change of extrema
for each IMF.

2.2 Amplitude ratio
In order to demonstrate how to select the am-
plitude ratio and study the effect of the amplitude

ratio on the results, Wu and

(16)

decomposition
Huang
0.1, 0.2, and 0.4 in standard deviation from the
investigated signals.

used different amplitude ratios that were

The ensemble number for
each case was 100. The results showed that the
synchronization between cases of different add-
ed-noise levels is remarkably good, except for the
case wherein no noise was added.

More decomposition of two different data sets
was also conducted. The results reveal that in-
creasing noise amplitudes or ensemble numbers in-
significantly alters the decomposition if the added
noise has moderate amplitude and the ensemble
number is large enough. Wu and Huang"® sug-
gested that for most cases the amplitude of added
noise is approximately 0.2 standard deviations
from the data.

The selected ensemble number and the ampli-
tude of added noise, as discussed in Ref. (16), is
not always the proper value. Generally, when the
signal is dominated by high-frequency components,
the noise amplitude should decrease or the ensem-
ble number should increase. On the contrary,
when the signal is dominated by low-frequency
components, the noise amplitude should increase

should decrease!™.

or the ensemble number
However, there is no basic guideline or a speci-
fied equation reported in the literature to select
the noise amplitude or ensemble number yet.
Thus, different noise levels and ensemble numbers
should be tried for an investigated signal in order
to select the

“uniqueness” of the EEMD method.

appropriate one. This is the
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3. Data Acquistion and Results

The vibration data used in this paper is ac-
quired from an industrial company in Korea. The
Wilcox accelerometer used during the data acquis-
ition has a sensitivity of 100 mV/g. This sensor is
installed on the radial direction of the slewing
bearings, as shown in Fig. 2. The slewing bearing
is a single-row Koyo from Japan with an inner
and outer diameter of 1093 mm and 1107 mm,
respectively. The bearing runs continuously in one
direction at a rotational speed of 15rpm. The 15
rpm is obtained from a gear reducer mechanism.
The driving motor rotational speed is 1800 rpm,
and the gear ratio is 17:1. The output shaft speed
of the driving motor is 106 rpm. The gear motor
has 18 gear teeth, and the slewing bearing has
123 gear teeth. Therefore, the slewing bearing
speed is also 15 rpm. This bearing has been used

for seven years. The maintenance engineer of the

Table 1 Bearing frequencies

FTF 0.24 Hz GMF 30 Hz
BSF 5.16 Hz 2x GMF 60 Hz
BPFO 11.31 Hz 3x GMF 90 Hz
BPFI 11.87 Hz Bearing speed 0.24 Hz

(1) Driving motor (2) Motor gear
(3) Slewing bearing gear (4) Sensor placement(radial)

Fig. 2 Slewing bearing and sensor placements

bearing company says that it must be changed af-
ter six years use. Therefore, these data are treated
as bearing damage data, supposedly including out-
er or inner race faults or ball faults. If there is a
fault in the outer race, inner race, or even in the
rolling element, the bearing fault frequencies
should be appear in the FFT. The bearing fre-
quencies were calculated and are presented in
Table 1, where the gear mesh frequency is de-
noted by GMF.

Four data sets were acquired on May 26, 2010;
December 7, 2010; July 19, 2011; and November
1, 2011. These data are acquired within 1.6 s
with a sampling frequency fs of 20480 Hz. Thus,
they contain a discrete signal with a length N of
32768. Simple arithmetic is used to calculate the

frequency resolution by

1
Frequency resolution :(W]* fs
1 (3)
= *20480 =0.625 Hz
32768

According to the frequency resolution, the bear-
ing fault frequencies should be able to be identi-
fied, except the FTF frequency(0.24 Hz),which is
lower than 0.625 Hz. The four different data sets
from the years 2010 and 2011 are selected sub-
jectively to study the degradation conditions of
the bearing. In the 2011 data, the bearing has
been running for seven years. The FFTs of the
four data sets are presented in Fig. 3. According
to Fig. 3(a), the GMF is approximately 30 Hz, and
the GMF harmonics appear and are valued as fol-
lows: 2x GMF is 60 Hz, 3x GMF is 90 Hz, and
4x GMF is 120Hz.
scale(y-axis) from 0.01 g to 0.006 g enables this to

Enlarging the amplitude
be seen more clearly. A comparison of Fig. 3(a)
and 3(d) shows that the GMF and the GMF har-
amplitudes on May 26, 2010 and
November 1, 2011 are different. The amplitude of
the 1x GMF on November 1, 2011
than on May 26" 2011 the amplitude of the Ix

monics

is smaller
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Fig. 3 FFT of four data samples
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GMF and other GMF harmonics on November 1,
2011 This indicates that the
GMF is no longer dominant when the bearing is

is relatively flat.

close to failure.

In Fig.3(a), the frequencies are dominated by
the GMF and its harmonics; from Fig.3(b) to
3(d) only BPFI and its harmonics are identified,
among three fault frequencies. Even though the
BPFI frequency and its harmonics appeared, the
amplitude is weak, indicating BPFI is not a domi-
nant frequency even when the bearing is close to
failure. Based on the result in Fig. 3, the bearing
condition is assumed to be in a normal condition.
Moreover, this FFT

tenance engineers unsuccessful in determining the

information renders main-
maintenance schedule. Hence, another signal analy-
sis technique is needed to support the FFT results.

The November 1, 2011 data are subject to the
EEMD method to reveal the information related to
the fault frequencies. As explained in chapter 2,
there is no basic guideline or specified equation
reported in the literature to select the noise ampli-
Thus, different
should be
evaluated for an investigated signal in order to se-

tude or ensemble number yet.

noise levels and ensemble numbers

lect the appropriate one. First, we use the added
noise amplitudes of 0.1, 0.2, and 0.4 of the bear-
ing signal. The ensemble number for each case is
100. The results(not shown here) did not produce
any fault frequencies. More decomposition was
then carried out, with an increase in the ensemble
number to 500. The result(also not shown here) is
the same as the result for the ensemble number of
100. Finally, with an ensemble number 1000, one
fault frequency(BSF) of 5.178 Hz appears, as
shown in Fig. 4(result 12). In this case, the BSF
is identified when the added-noise amplitude is
0.2 of the bearing signal. Two frequencies close
to 1x GMF and 2x GMF also appear in Fig. 4
(result 8 and 9, Naturally, the

low-frequency signal will be modulated by the

respectively).

high-frequency signal. Hence, the reconstruction of



W. Caesarendra, et al; Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode...

signals can be accomplished by adding several number of 1000. Calculating the decomposition of
EEMD decomposition results. In this case, we as- the reconstruction signal(results 6~9), the fre-
sumed that the BPFI frequency is modulated by a quency close to BPFI emerges in result 7, as
GMF  frequency and  another  neighboring shown in Fig. 6.

frequency. The reconstructed signal is the addition There is no scientific rule reported on how to
of signals of results 7 to 10(see Fig.4), where re- determine the ratio of the noise amplitude to the
sults 8 and 9 are the GMF frequencies. The origi- ensemble number. Thus, this study provides a

nal EMD is used to decompose the reconstructed comparison of these parameters with respect to the
signal and the result is shown in Fig.5. Figure 5 nearest value error. In general, the nearest-value er-
reveals a frequency of 11.25Hz, which approx- ror is calculated based on the root-mean-square er-
imates BPFO. This frequency appears in result 7 ror between the bearing fault frequencies (including
using the EEMD method. The reconstruction re- its harmonic frequencies) and the selected EEMD
sults allow different amplitudes of added noise to results. The results are shown in Fig. 7.

be tested. Next, identical work using EEMD is First, the EEMD results are sorted. The selected
conducted with o=0.4 and the same ensemble EEMD results refer to any values between a pre-

result11, freq = 8.5441

Ensemble EMD results °‘°§ T i i i T i T
Result 2 2587.795 Hz -0.05 1 I I I " I .
0 02 0.4 06 08 1 1.2 1.4 1.6
Result 3 1722.780 Hz result12, freq = 5.1787
Result4  1039.439 Hz oot }(\J\/\/\/\_ ' ‘ ' \ H
Result 5 561.199 Hz 001, L . I
0.4 06 08 1 1.2 1.4 1.8
Result 6 311.864 Hz TesUlt13, freq = 1.1456
0.05 . : . : . . .
s sy : ]
Result 8 63.597 Hz -0.05; o2 oz s s . 2 5 e
Result 9 33.750 Hz ’ result14, freq = 0.67756 ' '
Result 10 18.076 Hz 005%,4/—+ \J {
Result 11 8.544 Hz 0,05 o 5 55 =
| Result 12 5.178 Hz result15, freq = 053511
Result 13 1.145 Hz ""; ‘ ‘ ‘ " ‘ " {
Result 14 0.677 Hz 0.01 I | | | |
0 02 0.4 06 0.8 1 12 1.4 16
Result 15 0.535 Hz .
Time (Seconds)

Fig. 4 EEMD results(a=0.2, £=1000)

resulté, freq = 19.6395
UMMAWW
01 . . L . L . )
EMD results 0 02 0.4 06 0.8 1 1.2 14 186
result7, freq = 11.2537
Result 2 285.566 Hz

0.05
Result 3 153.818 Hz o0s] M“JUVM\/\/\N\H

Result 4 69.184 Hz 0.4 0.6 0.8

Result5  34.065 Hz 0.05 ‘ ‘ TeSUE, Feq =TT 5 ‘ ‘

Result 6 19.639 Hz o og ‘ ‘ . = r‘\—f“\—/ﬁ
| Result 7 11.254 Hz o 0.2 0.4 0.6 1 1.2 1.4 1.6
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Result 10 1.218 Hz _0'050 o.‘z 0‘4 ols o‘a ; 1‘2 1‘4 16

result10, freq = 1.2184

I
0.2 0.4 0.6 0.8 1 1.2 1.4
Time (Seconds)

Fig. 5 EEMD of reconstruction signal(a=0.2, £=1000)
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Fig. 6 EEMD of reconstruction signal(a=0.4, £E=1000)

defined range. The predefined range for each fault

frequency is given as follows:

BSF:

(IxBSF —5%* BSF) < A < (6xBSF +5% * BSF)
BPFO :

(IxBPFO-5%* BPFO) < A < (6xBPFO+5%%* BPFO)
BPFI :

(IxBPFI — 5% * BPFI) <\ < (6xBPFI + 5% * BPFI)

“

where, *=(41,42,...,4;) is the vector of the se-
lected EEMD results, n is the data length, and 5
% 1is obtained based on 100 % being the con-
fidence interval of 95 %.

Second, the ratio of n and the selected fault

frequencies below the value of 4; are defined as

n

fi= Ixo
2xo
3xo 3)
4xo
Sxo

6xo

where i is a real number in the range 1, 2, *-:, n
and o denotes the fault frequency mode(BSF,
BPFO, and BPFI). This process continues until 7,
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the data length, is achieved and is saved as a
vector f.

Third, the ratio between the sclected EEMD re-
sults, 4;, and the selected fault frequencies below

the value of 4; are calculated as

A
Ixo
2xo
3xo 6)
4xo
Sxo

6xo

This process continues until n data points are
reached and is then saved as a vector, g.

Fourth, the root-mean-square error of vectors f°
and g are the nearest-value errors and are plotted in
Fig. 7. Finally, the above algorithm is applied for
different amplitude ratios: 0.1, 0.2, 0.3, and 0.4.

Figure 7(a~d) depicts the results of different
amplitude ratios and ensemble numbers for three
different fault frequencies(BSF, BPFO, and BPFI)
and the GMF. Based on the results from Fig. 7,
the proper amplitude ratio and ensemble are se-
lected for this study. According to Fig.7(a), the
minimum nearest value error is achieved when the

amplitude ratio is 0.2 and the ensemble number is
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Fig. 7 Effect of added noise ratio on nearest value error for different ensemble numbers

1000. This indicates that using an amplitude ratio of
0.2 and an ensemble number of 1000 approximately
identifies the GMF and Fig. 7(b)

shows similar results as Fig. 7(a), where the mini-

its harmonics.

mum nearest value error occurs when the amplitude
ratio is 0.2 and the ensemble number is 1000.
These two results support the result in Fig. 4, where
the 1x GMF, 2x GMF, and 1x BSF are identified
closely using the EEMD method with an amplitude
ratio of 0.2 and an ensemble number of 1000. For
BPFI, the minimum nearest value error is obtained
when the amplitude ratio is 0.4 and the ensemble
number is 1000.

Other slewing bearing data with a frequency

resolution of 0.31 Hz are utilized. This data is ac-
quired with a sampling frequency of 640 Hz with-
in 3.2s. Thus, the total number of data points pro-
duced was 2048 samples. Eq. (3) was used to cal-
culate the frequency resolution to be 0.31 Hz. The
FFT is shown in Fig. 8(a); the FFT is plotted ev-
ery 25 Hz to better resolve the BPFO and BPFI
harmonics, as shown in Fig. 8(b~d). The detailed
values of the BPFO and BPFI harmonics are pre-
sented in Table 2.

Using a frequency resolution of 0.31 Hz, which
is lower than the difference between BPFO and
BPFI(0.56 Hz), both
BPFO and BPFI. Unfortunately, this is not possi-

we normally can identify
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ble for the slewing bearing case. Low-rotational
speeds produce weak signals; therefore, the fault
frequency is difficult to identify using FFT, as
shown in Fig.8 and Table 2. BPFI still can be
identified, although with a low amplitude. This re-
sult is similar to the data with the 0.625 Hz fre-
quency resolution, where the only fault frequency
that can be detected is BPFI, as presented in Fig. 3.
In this particular case, EEMD is necessary to sup-
port the FFT results. This data is then analyzed us-
ing the EEMD method with an identical ensemble
number of 1000 and an amplitude ratio of «=0.2.
The result is shown in Fig. 9. Figure 9 shows that
the 1x GMF appears in result 5 and the frequency
of 1543 Hz, which is close to the 3x BSF fre-
quency, also appears in result 6. Another EEMD re-
sult is shown in Figure 10 with an ensemble num-
ber of 1000 and an amplitude ratio of a=0.4. The
Ix GMF frequency is still identified in result 5, and
the frequency near BPFI is appears in result 7.

4. Conclusion

In cases when FFT requires another method to
support its result in identifying fault frequencies,
EEMD, a relatively new and improved method,
has potential. This paper has discussed the use of
EEMD and EMD for analyzing real slewing ring
bearings with natural damage. The selection of the
amplitude ratio and the ensemble number is
empirical. Different data may have different proper
amplitude ratios and ensemble numbers. These two
parameters are selected subjectively based on the

suggestions of Wu and Huang“é).

In particular
cases, the desired frequency is still concealed in
individual IMFs. Therefore, this paper used a re-
construction technique to extract more bearing

fault signals from the EEMD results.
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Performance  Enhancement of Ensemble

Appendix A: EEMD Algorithm

Ensemble empirical mode decomposition
for i=1,...,F do
White noise

n(t)? =w)” a i=l..,E

Add white noise to the original data (stepl)
v =x(0)? n()? | i=1yu,E
for j=1lu.,d do
Decompose »()® using EMD into IMFs
(step2)
. d) .
Result szé) ) Ji=leoE
end for
Repeat stepl and step2 for i=2,..,FE
(step 3)
. o(d . d . o(d
IMF = lmf((l.)) +1mf((l.+f) + ot lmf((E))
end for
Obtain the ensemble means (step4)

result = mean (IMF)

E is the ensemble number; ¢, the data length of
the original signal x(#); «, the ratio of the standard
deviation of white noise, w(f), to the original signal
x(f); and d, the number of decompositions or IMFs.
d can be calculated by d =log2(r)-1,
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