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ABSTRACT

Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it 
became necessary for a proper maintenance schedule that replaces the slewing bearings installed in 
massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is 
still the primary technique used for dealing with low-speed bearing cases. Few studies employed vi-
bration analysis because the signal generated as a result of the impact between the rolling element 
and the natural defect spots at low rotational speeds is generally weak and sometimes buried in 
noise and other interference frequencies. In order to increase the impact energy, some researchers 
generate artificial defects with a predetermined length, width, and depth of crack on the inner or 
outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This 
paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode 
decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational 
speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean 
industrial company. In this study, EEMD is used to support and clarify the results of the fast 
Fourier transform(FFT) in identifying bearing fault frequencies.

요  약

대부분의 철강산업 기계 등에 설치되어 사용되는 선회베어링은 교체를 위한 정확한 정비계획이 필요하

기 때문에 저속회전체의 선회베어링에 대한 진동 상태감시가 매우 중요하게 되었다. 지금까지 음향방출

(AE)법이 저속베어링의 상태감시에 가장 많이 사용되는 기술이고 몇몇의 경우는 진동을 사용한다. 음향방

출을 사용하는 일반적인 이유는 저속에서 구름요소와 결함위치 사이의 충격에 의하여 발생되는 신호가 
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약하고 때때로 노이즈나 다른 간섭 주파수에 결함신호가 묻혀 검출이 어렵기 때문이다. 따라서 쉽게 특정 

결함에 대한 결함주파수의 동정을 위하여 몇몇 연구자들은 충격에너지를 증가시키기 위하여 인위적으로 

미리 정해진 길이, 넓이와 깊이의 결함을 베어링의 내, 외부 레이스에 인가하기도 한다. 이 논문에서는 15
rpm에서 운전하는 저속 선회베어링의 진동신호에 EMD와 EEMD를 적용하였고 논문에서 사용한 진동결

함 신호는 국내 산업체에서 공급받은 것이다. 이 논문에서는 베어링결함 주파수 동정을 위하여 EEMD를 

사용하여 결함신호의 FFT처리 결과를 입증하고 설명하였다.

1. Introduction

Most published articles on the topic of slewing 
bearings are frequently concerned with using the fi-
nite element method for analysis(1~5); there is also a 
small amount of work done in oil analysis(6,7), and 
even less in vibration monitoring techniques(8). A 
recent article about slewing bearings as related to 
vibration analysis is presented by Žvokelj(9,10). The 
method used in Refs. (9), (10) is the ensemble 
empirical mode decomposition (EEMD) combined 
with multi-scale principal component analy-
sis(MSPCA). An artificial fault is introduced on 
the inner ring of the slewing bearing as presented 
in Refs. (9), (10). As signal from artificial single 
fault is easier to identify than more realistic mul-
tiple fault damage the method is yet to be proven 
for practical application. Another report in the lit-
erature used EEMD to study high-speed rolling el-
ement bearings(2100 rpm) with seeded faults(19) al-
beit the artificial damage is not representative of 
real conditions. In this paper, slewing bearing data 
without artificial defects are used. EEMD, which 
is an improved method of empirical mode decom-
position(EMD), is employed to support and clarify 
the results of the fast Fourier transform(FFT). 
Moreover, two bearing frequencies, BSF and BPFO, 
that do not appear in the FFT are identified using 
EEMD.

2. EMD and EEMD

EMD was first introduced by Huang et al.(11). 
EMD has been demonstrated to be adaptable in a 

wide variety of applications for extracting signals 
from data generated in noisy nonlinear and 
non-stationary processes(see, for example, Huang 
and Shen(12) and Huang and Attoh-Okine(13)). In 
the rolling element bearing case, the rolling elements 
contact each other and generate different mode oscil-
lations, which synchronize simultaneously. The main 
purpose of EMD is to decompose these signals 
into intrinsic mode functions(IMFs), some of 
which are bearing fault signals. The EMD method 
decomposes the bearing signal x(t) into IMFs, cj, 
by 

∑
=

+=
n

j
nj rctx

1

)( (1)

where n is the number of IMFs, cj represents the 
IMFs, and rn the final residue of data. IMFs are 
defined as oscillatory functions with varying am-
plitude and frequency. The frequencies of the 
IMFs range from high to low. According to Ref.
(11), an IMF is a function that satisfies the two 
following conditions:

(1) Throughout the length of a single IMF, the 
number of extrema and the number of times the 
function crosses zero must either be equal or dif-
fer by one at most.

(2) At any data location, the mean value of the 
envelope is defined by the local maxima and the 
envelope defined by the local minima is zero.

The process of decomposing a signal into IMFs 
is called the sifting process.

One of the main demerits of the original EMD 
is the problems with modes mixing. Mode-mixing 
is defined as a single IMF either consisting of a 



W. Caesarendra, et al ; Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode...

Transactions of the KSNVE, 23(2) : 131~143, 2013┃133

signal with widely disparate scales or a similar 
signal that resides in different IMF components(14). 
The mode-mixing problem is associated with sig-
nal intermittency. Moreover, the intermittency 
could cause aliasing in time-frequency dis-
tributions, making the individual IMF lack phys-
ical meaning. To prove the existence of inter-
mittency, Huang et al.(15) conducted an inter-
mittence test. They found that the intermittency 
can be avoided by subjectively selecting appro-
priate scales. With this subjective intervention, the 
EMD ceases to be fully adaptive. Thus, to over-
come the scale separation issue without the inter-
ference of a subjective intermittent test, Wu and 
Huang(16) proposed a noise-assisted data analysis 
(NADA) method, namely, EEMD.

In practice, the low-speed slewing bearing sig-
nal has a low signal-to-noise ratio(SNR). This is 
due to the impact energy between the rolling ele-
ment and the defect spots, which is generally 
weak. This weak vibration signal is buried in 
noise and difficult to identify. Hence, EEMD, 
which can be used to cancel out this noise and 
extract the bearing signal, is employed in this 
study. The term “ensemble” in EEMD refers to 
the repeated trial of added noise with a finite am-
plitude into the original time series signal. The 
true IMF results are computed from each trial by 
taking the mean value of the corresponding IMFs. 
The basic principle of cancelling out the noise 
from the bearing signal x(t) is as follows. The 
added white noise distributes uniformly to the 
time-scale or time-frequency space with the con-
stituent components of different scales. The added 
noise in this case works as a uniform reference 
frame in the time-frequency space. When the 
bearing signal is added to this uniform reference 
frame, the bits of the bearing signals of different 
scales are automatically projected onto proper 
scales of reference. Certainly, each individual trial, 
which consists of the signal and the added white 
noise for its decompositions, may produce noisy 

results. Because the noise is different for separate 
trials, it is cancelled out in the ensemble mean of 
a large enough number of trials. In other words, 
the only persistent part that survives in the aver-
aging process is the signal, which is then treated 
as the true result(17). The principle of EEMD is 
described in Ref. (16) as follows.

(1) A collection of white noises cancels out in 
an ensemble mean; therefore, only the signal can 
survive and persist in the final noise-added signal 
ensemble mean.

(2) White noise is necessary to force the en-
semble to find all possible solutions; the white 
noise makes the different scale signals reside in 
the corresponding IMFs and renders the resulting 
ensemble mean more meaningful.

(3) The decomposition with a truly physical 
meaning of EMD is not without noise; it is des-
ignated to be the ensemble mean of a large num-
ber of trials including the noise-added signal.

According to Wu et al.(16) and based on the 
principle of EEMD above, the EEMD decom-
position algorithm of the original signal x(t) can 
be summarized in the following steps:

(1) Add the white noise series to the bearing 
signal. Note that the number of data points of 
added noise is equal to the bearing signal.

(2) Decompose the amalgamation data(the bear-
ing signal plus the white noise) into IMFs until 
the smallest frequency is reached. This individual 
decomposition is obtained by using the original 
EMD method.

(3) Repeat step 1 and step 2 continuously with 
a different white noise series.

(4) Obtain the(ensemble) means of the corre-
sponding IMFs of the decomposition as the final 
result.

The above steps are illustrated in Fig. 1 and 
Appendix A.

To apply EEMD, two parameters should be 
determined: (1) the number of ensembles notated 
by E and (2) the amplitude ratio between the 
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added noise and the bearing signal, which is de-
noted as .

 
2.1 Number of ensembles

The relationship among the ensemble number, 
the amplitude of the added noise, and the effect 
of the added noise can be represented by the fol-
lowing equation, which 
has been derived by Wu and Huang(17) :

N
a

=ε (2a)

or

0ln
2

ln =+ Na
ε (2b)

where N  is the ensemble number, a is the 
amplitude of the added white noise, and ε  is the 
standard deviation of the error, which is defined 
as the difference between the input signal and the 
corresponding IMFs. Eqs. (2a) and (2b) imply that 
a small error can be achieved by decreasing the 
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Fig. 1 Illustrations of the EEMD method

added noise amplitude or by increasing the ensem-
ble number. In an exceptional case, i.e., when the 
signal to be analyzed has a large gradient, if the 
error is small, it may cause a change of extrema 
for each IMF.

2.2 Amplitude ratio

In order to demonstrate how to select the am-
plitude ratio and study the effect of the amplitude 
ratio on the decomposition results, Wu and 
Huang(16) used different amplitude ratios that were 
0.1, 0.2, and 0.4 in standard deviation from the 
investigated signals. The ensemble number for 
each case was 100. The results showed that the 
synchronization between cases of different add-
ed-noise levels is remarkably good, except for the 
case wherein no noise was added.

More decomposition of two different data sets 
was also conducted. The results reveal that in-
creasing noise amplitudes or ensemble numbers in-
significantly alters the decomposition if the added 
noise has moderate amplitude and the ensemble 
number is large enough. Wu and Huang(16) sug-
gested that for most cases the amplitude of added 
noise is approximately 0.2 standard deviations 
from the data.

The selected ensemble number and the ampli-
tude of added noise, as discussed in Ref. (16), is 
not always the proper value. Generally, when the 
signal is dominated by high-frequency components, 
the noise amplitude should decrease or the ensem-
ble number should increase. On the contrary, 
when the signal is dominated by low-frequency 
components, the noise amplitude should increase 
or the ensemble number should decrease(18). 
However, there is no basic guideline or a speci-
fied equation reported in the literature to select 
the noise amplitude or ensemble number yet. 
Thus, different noise levels and ensemble numbers 
should be tried for an investigated signal in order 
to select the appropriate one. This is the 
“uniqueness” of the EEMD method.
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3. Data Acquistion and Results

The vibration data used in this paper is ac-
quired from an industrial company in Korea. The 
Wilcox accelerometer used during the data acquis-
ition has a sensitivity of 100 mV/g. This sensor is 
installed on the radial direction of the slewing 
bearings, as shown in Fig. 2. The slewing bearing 
is a single-row Koyo from Japan with an inner 
and outer diameter of 1093 mm and 1107 mm, 
respectively. The bearing runs continuously in one 
direction at a rotational speed of 15 rpm. The 15 
rpm is obtained from a gear reducer mechanism. 
The driving motor rotational speed is 1800 rpm, 
and the gear ratio is 17:1. The output shaft speed 
of the driving motor is 106 rpm. The gear motor 
has 18 gear teeth, and the slewing bearing has 
123 gear teeth. Therefore, the slewing bearing 
speed is also 15 rpm. This bearing has been used 
for seven years. The maintenance engineer of the 

Table 1 Bearing frequencies
FTF 0.24 Hz GMF 30 Hz

BSF 5.16 Hz 2x GMF 60 Hz

BPFO 11.31 Hz 3x GMF 90 Hz

BPFI 11.87 Hz Bearing speed 0.24 Hz

(1) Driving motor (2) Motor gear 
(3) Slewing bearing gear (4) Sensor placement(radial)

Fig. 2 Slewing bearing and sensor placements

bearing company says that it must be changed af-
ter six years use. Therefore, these data are treated 
as bearing damage data, supposedly including out-
er or inner race faults or ball faults. If there is a 
fault in the outer race, inner race, or even in the 
rolling element, the bearing fault frequencies 
should be appear in the FFT. The bearing fre-
quencies were calculated and are presented in 
Table 1, where the gear mesh frequency is de-
noted by GMF.

Four data sets were acquired on May 26, 2010; 
December 7, 2010; July 19, 2011; and November 
1, 2011. These data are acquired within 1.6 s 
with a sampling frequency fs of 20480 Hz. Thus, 
they contain a discrete signal with a length N  of 
32768. Simple arithmetic is used to calculate the 
frequency resolution by

fs
N

resolutionFrequency *⎟
⎠

⎞
⎜
⎝

⎛
=

1

Hz625.020480*
32768

1
==

(3)

According to the frequency resolution, the bear-
ing fault frequencies should be able to be identi-
fied, except the FTF frequency(0.24 Hz),which is 
lower than 0.625 Hz. The four different data sets 
from the years 2010 and 2011 are selected sub-
jectively to study the degradation conditions of 
the bearing. In the 2011 data, the bearing has 
been running for seven years. The FFTs of the 
four data sets are presented in Fig. 3. According 
to Fig. 3(a), the GMF is approximately 30 Hz, and 
the GMF harmonics appear and are valued as fol-
lows: 2x GMF is 60 Hz, 3x GMF is 90 Hz, and 
4x GMF is 120 Hz. Enlarging the amplitude 
scale(y-axis) from 0.01 g to 0.006 g enables this to 
be seen more clearly. A comparison of Fig. 3(a) 
and 3(d) shows that the GMF and the GMF har-
monics amplitudes on May 26, 2010 and 
November 1, 2011 are different. The amplitude of 
the 1x GMF on November 1, 2011 is smaller 
than on May 26th 2011 the amplitude of the 1x 
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(a)

(b)

(c)

(d)

Fig. 3 FFT of four data samples

GMF and other GMF harmonics on November 1, 
2011 is relatively flat. This indicates that the 
GMF is no longer dominant when the bearing is 
close to failure.

In Fig. 3(a), the frequencies are dominated by 
the GMF and its harmonics; from Fig. 3(b) to 
3(d) only BPFI and its harmonics are identified, 
among three fault frequencies. Even though the 
BPFI frequency and its harmonics appeared, the 
amplitude is weak, indicating BPFI is not a domi-
nant frequency even when the bearing is close to 
failure. Based on the result in Fig. 3, the bearing 
condition is assumed to be in a normal condition. 
Moreover, this FFT information renders main-
tenance engineers unsuccessful in determining the 
maintenance schedule. Hence, another signal analy-
sis technique is needed to support the FFT results.

The November 1, 2011 data are subject to the 
EEMD method to reveal the information related to 
the fault frequencies. As explained in chapter 2, 
there is no basic guideline or specified equation 
reported in the literature to select the noise ampli-
tude or ensemble number yet. Thus, different 
noise levels and ensemble numbers should be 
evaluated for an investigated signal in order to se-
lect the appropriate one. First, we use the added 
noise amplitudes of 0.1, 0.2, and 0.4 of the bear-
ing signal. The ensemble number for each case is 
100. The results(not shown here) did not produce 
any fault frequencies. More decomposition was 
then carried out, with an increase in the ensemble 
number to 500. The result(also not shown here) is 
the same as the result for the ensemble number of 
100. Finally, with an ensemble number 1000, one 
fault frequency(BSF) of 5.178 Hz appears, as 
shown in Fig. 4(result 12). In this case, the BSF 
is identified when the added-noise amplitude is 
0.2 of the bearing signal. Two frequencies close 
to 1x GMF and 2x GMF also appear in Fig. 4 
(result 8 and 9, respectively). Naturally, the 
low-frequency signal will be modulated by the 
high-frequency signal. Hence, the reconstruction of 
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Fig. 4 EEMD results(=0.2, E=1000)

Fig. 5 EEMD of reconstruction signal(=0.2, E=1000)

signals can be accomplished by adding several 
EEMD decomposition results. In this case, we as-
sumed that the BPFI frequency is modulated by a 
GMF frequency and another neighboring 
frequency. The reconstructed signal is the addition 
of signals of results 7 to 10(see Fig. 4), where re-
sults 8 and 9 are the GMF frequencies. The origi-
nal EMD is used to decompose the reconstructed 
signal and the result is shown in Fig. 5. Figure 5 
reveals a frequency of 11.25 Hz, which approx-
imates BPFO. This frequency appears in result 7 
using the EEMD method. The reconstruction re-
sults allow different amplitudes of added noise to 
be tested. Next, identical work using EEMD is 
conducted with =0.4 and the same ensemble 

number of 1000. Calculating the decomposition of 
the reconstruction signal(results 6~9), the fre-
quency close to BPFI emerges in result 7, as 
shown in Fig. 6.

There is no scientific rule reported on how to 
determine the ratio of the noise amplitude to the 
ensemble number. Thus, this study provides a 
comparison of these parameters with respect to the 
nearest value error. In general, the nearest-value er-
ror is calculated based on the root-mean-square er-
ror between the bearing fault frequencies (including 
its harmonic frequencies) and the selected EEMD 
results. The results are shown in Fig. 7.

First, the EEMD results are sorted. The selected 
EEMD results refer to any values between a pre-
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Fig. 6 EEMD of reconstruction signal(=0.4, E=1000)

defined range. The predefined range for each fault 
frequency is given as follows:

BSF :

)*%(λ)*%( BSFxBSFBSFxBSF 5651 +≤≤−
BPFO :

)*%(λ)*%( BPFOxBPFOBPFOxBPFO 5651 +≤≤−

BPFI :

)*%(λ)*%( BPFIxBPFIBPFIxBPFI 5651 +≤≤−

(4)

where, ),...,,(λ nλλλ 21=  is the vector of the se-
lected EEMD results, n is the data length, and 5
% is obtained based on 100 % being the con-
fidence interval of 95 %.

Second, the ratio of n and the selected fault 
frequencies below the value of iλ  are defined as 

i

i
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x
x
x
x
x

nf
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1

(5)

where i is a real number in the range 1, 2, …, n 
and σ  denotes the fault frequency mode(BSF, 
BPFO, and BPFI). This process continues until n, 

the data length, is achieved and is saved as a 
vector f.

Third, the ratio between the selected EEMD re-
sults, iλ , and the selected fault frequencies below 
the value of iλ  are calculated as

i

i
i

x
x
x
x
x
x

g
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(6)

This process continues until n data points are 
reached and is then saved as a vector, g.

Fourth, the root-mean-square error of vectors f 
and g are the nearest-value errors and are plotted in 
Fig. 7. Finally, the above algorithm is applied for 
different amplitude ratios: 0.1, 0.2, 0.3, and 0.4.

Figure 7(a~d) depicts the results of different 
amplitude ratios and ensemble numbers for three 
different fault frequencies(BSF, BPFO, and BPFI) 
and the GMF. Based on the results from Fig. 7, 
the proper amplitude ratio and ensemble are se-
lected for this study. According to Fig. 7(a), the 
minimum nearest value error is achieved when the 
amplitude ratio is 0.2 and the ensemble number is 
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Fig. 7 Effect of added noise ratio on nearest value error for different ensemble numbers 

1000. This indicates that using an amplitude ratio of 
0.2 and an ensemble number of 1000 approximately 
identifies the GMF and its harmonics. Fig. 7(b) 
shows similar results as Fig. 7(a), where the mini-
mum nearest value error occurs when the amplitude 
ratio is 0.2 and the ensemble number is 1000. 
These two results support the result in Fig. 4, where 
the 1x GMF, 2x GMF, and 1x BSF are identified 
closely using the EEMD method with an amplitude 
ratio of 0.2 and an ensemble number of 1000. For 
BPFI, the minimum nearest value error is obtained 
when the amplitude ratio is 0.4 and the ensemble 
number is 1000.

Other slewing bearing data with a frequency 

resolution of 0.31 Hz are utilized. This data is ac-
quired with a sampling frequency of 640 Hz with-
in 3.2s. Thus, the total number of data points pro-
duced was 2048 samples. Eq. (3) was used to cal-
culate the frequency resolution to be 0.31 Hz. The 
FFT is shown in Fig. 8(a); the FFT is plotted ev-
ery 25 Hz to better resolve the BPFO and BPFI 
harmonics, as shown in Fig. 8(b~d). The detailed 
values of the BPFO and BPFI harmonics are pre-
sented in Table 2.

Using a frequency resolution of 0.31 Hz, which 
is lower than the difference between BPFO and 
BPFI(0.56 Hz), we normally can identify both 
BPFO and BPFI. Unfortunately, this is not possi-
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Fig. 8 FFT of vibration data(with a frequency resolution of 0.31 Hz) and BPFO and BPFI harmonics(see 

Table 2)

Fig. 9 EEMD results of vibration data with a frequency resolution of 0.31 Hz(=0.2, E=1000)

Fig. 10 EEMD results of vibration data with a frequency resolution of 0.31 Hz(=0.4, E= 1000)
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ble for the slewing bearing case. Low-rotational 
speeds produce weak signals; therefore, the fault 
frequency is difficult to identify using FFT, as 
shown in Fig. 8 and Table 2. BPFI still can be 
identified, although with a low amplitude. This re-
sult is similar to the data with the 0.625 Hz fre-
quency resolution, where the only fault frequency 
that can be detected is BPFI, as presented in Fig. 3. 
In this particular case, EEMD is necessary to sup-
port the FFT results. This data is then analyzed us-
ing the EEMD method with an identical ensemble 
number of 1000 and an amplitude ratio of =0.2. 
The result is shown in Fig. 9. Figure 9 shows that 
the 1x GMF appears in result 5 and the frequency 
of 15.43 Hz, which is close to the 3x BSF fre-
quency, also appears in result 6. Another EEMD re-
sult is shown in Figure 10 with an ensemble num-
ber of 1000 and an amplitude ratio of =0.4. The 
1x GMF frequency is still identified in result 5, and 
the frequency near BPFI is appears in result 7.

4. Conclusion

In cases when FFT requires another method to 
support its result in identifying fault frequencies, 
EEMD, a relatively new and improved method, 
has potential. This paper has discussed the use of 
EEMD and EMD for analyzing real slewing ring 
bearings with natural damage. The selection of the 
amplitude ratio and the ensemble number is 
empirical. Different data may have different proper 
amplitude ratios and ensemble numbers. These two 
parameters are selected subjectively based on the 
suggestions of Wu and Huang(16). In particular 
cases, the desired frequency is still concealed in 
individual IMFs. Therefore, this paper used a re-
construction technique to extract more bearing 
fault signals from the EEMD results.
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Appendix A: EEMD Algorithm

Ensemble empirical mode decomposition

for Ei ,...,1=  do
White noise

α)()( )()( ii twtn = , Ei ,...,1=

Add white noise to the original data (step1)
)()()( )()()( iii tntxty = , Ei ,...,1=

for dj ,...,1=  do

Decompose )()( ity  using EMD into IMFs
(step2)

Result 
)(

)(
d

iimf , Ei ,...,1=

end for

Repeat step1 and step2 for Ei ,...,2=  
(step 3)

)(
)(

)(
)(

)(
)( ...IMF d

E
d

i
d

i imfimfimf +++= +1

end for
Obtain the ensemble means (step4)

(IMF)meanresult =

E is the ensemble number; t, the data length of 
the original signal x(t);  , the ratio of the standard 
deviation of white noise, w(t), to the original signal 
x(t); and d, the number of decompositions or IMFs. 
d can be calculated by 12 −= )(log td .
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