• Title/Summary/Keyword: 구름 분류

Search Result 67, Processing Time 0.021 seconds

Cloud Analysis Using a Fuzzy Reasoning Method (퍼지 추론 기법을 이용한 구름 분석)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1181-1187
    • /
    • 2009
  • In this paper, we proposed a method to analyze kind of clouds using a fuzzy reasoning method. In the proposed method, we used the clues that G channel value is dominant from RGB color values in land areas and B channel value is dominant in the sea areas discovered by the analyses of both visible images and infrared images. By these information, R and B channel values are applied to land areas and R and G channel values are applied to the sea areas. Noise areas(areas except cloud areas) are removed from a visible image and an infrared image by a threshold value, and then land areas and the sea areas are discriminated from the noise removed image. Cloud areas are extracted from discriminated areas using R, G, B channel values and a fuzzy reasoning method, and finally kind of clouds is decided by combining same cloud areas included in both the visible image and the infrared image. In comparison with a conventional quantization method, we verified that the performance of cloud analysis by the proposed method is more efficient through experiments.

A new taxon of Hymenophyllum (Hymenophyllaceae): H. wrightii f. serratum (처녀이끼속의 신분류군: 구름처녀이끼(처녀이끼과))

  • Lee, Chang Shook;Lee, Kanghyup;Lee, Seong Gwon;Ebihara, Atsushi
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.4
    • /
    • pp.233-237
    • /
    • 2014
  • A new taxon, Hymenophyllum wrightii f. serratum C.S. Lee & K. Lee (Hymenophyllaceae), forma nov. was collected and described from forests in Mt. Halla, Jeju-do, Korea. This taxon, H. wrightii f. serratum C.S. Lee & K. Lee (vernacular name: 'Gu-reum-cheo-nyeo-i-kki') was distinguished from H. wrightii f. wrightii by having smaller leaves, broader basal part of leaf blade, broad-ovate laminae, larger sori and serrate margins of lips of involucres. The new taxon's name is based on serrate margin shape of the lips. A Korean name, 'Gu-reum-cheo-nyeo-i-kki', was newly given based on its habitat. Descriptions and its photograph in the habitat are provided along with a key to the species of Hymenophyllum from Korea.

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications (GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2015
  • Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

다중 시기/편광 SAR 자료를 이용한 지표 피복 구분

  • Park, No-Uk;Ji, Gwang-Hun;Gwon, Byeong-Du
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.79-84
    • /
    • 2005
  • 이 논문에서는 구름과 같은 기상 상태의 제약 없이 자료 획득이 가능한 SAR 자료를 이용하여 토지 피복 특성을 구분하고자 하였다. 기존 단일 주파수, 편광 상태의 자료만을 제공하는 SAR 자료를 이용한 분류에서의 낮은 분류 정확도를 향상시키고자 이 논문에서는 다중 시기 C 밴드 자료이면서 서로 다른 편광 상태의 자료를 제공하는 Radarsat-1(HH)와 ENVISAT(VV) 자료를 분류에 이용하였다. 분류 기법으로 Random Forests를 적용한 결과, 단일 편광 상태의 자료만을 이용하였을 때에 비해서 보다 향상된 분류 정확도를 얻을 수 있었다.

  • PDF

Two white-flowered Draba (Brassicaceae) species from Korean flora (한국의 흰꽃 피는 꽃다지속 (십자화과) 두 종)

  • Kim, Hoe-Won;Kim, Ki-Joong
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • Draba ussuriensis Pohle is reported from Mt. Baekdu in this paper as a new member of Korean flora. D. ussuriensis is a white-flowered perennial herb and similar to Draba mongolica Turczaninow. However, D. ussuriensis differs from Draba mongolica Turczaninow in a number of characters. The stems and pedicels of D. mongolica are covered by dense trichomes, while those of D. ussuriensis are glabrous or glabrescent. D. ussuriensis has fewer cauline leaves compared to D. mongolica. The Korean name of D. ussuriensis Pohle stems from the specific epithet of its scientific name. In addition, D. mongolica is a new name, replacing the previously misidentified names of D. glabella Pursh, D. daurica DC., D. incana L., and D. nipponica Makino in several different studies. We corrected the name based on a comparative morphological study of specimens collected from Mt. Baekdu and Gwanmobong and related species. As a result, Korean Draba consists of three species: two white-flowered species and one yellow-flowered D. nemorosa L.

A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory (보성 표준기상관측소자료를 활용한 국지예보모델 대기경계층 유형 비교 연구)

  • Hwang, Sung Eun;Kim, Byeong-Taek;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • Different physical processes, according to the atmospheric boundary layer types, were used in the Local Data Assimilation and Prediction System (LDAPS) of the Unified Model (UM) used by the Korea Meteorological Administration (KMA). Therefore, it is important to verify the atmospheric boundary layer types in the numerical model to improve the accuracy of the models performance. In this study, the atmospheric boundary layer types were verified using observational data. To classify the atmospheric boundary layer types, summer intensive observation data from radiosonde, flux observation instruments, Doppler wind Light Detection and Ranging(LIDAR) and ceilometer were used. A total number of 201 observation data points were analyzed over the course 61 days from June 18 to August 17, 2019. The most frequent types of differences between LDAPS and observed data were type 1 in LDAPS and type 2 in observed(each 53 times). And type 3 difference was observed in LDAPS and type 5 and 6 were observed 24 and 15 times, respectively. It was because of the simulation performance of the Cloud Physics such as that associated with the simulation of decoupled stratocumulus and cumulus cloud. Therefore, to improve the numerical model, cloud physics aspects should be considered in the atmospheric boundary layer type classification.

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

Fully Automated Generation of Cloud-free Imagery Using Landsat-8 (Landsat-8을 이용한 자동화된 구름 제거 영상 생성)

  • Kim, Byeong Hee;Kim, Yong;Han, You Kyung;Choi, Won Seok;Kim, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Landsat is one of the popular satellites for observing land surface that is used in various areas including monitoring, detecting and classifying changes in land surface. However, shades, which cloud itself and its shadow, interrupted often clear observation and analysis of ground surface. For this reason, the process of removing shades and restoring original ground surfaces are critical for geospatial users. This study is planned to recommend a methodology for more accurate and clear images of Landsat-8 sensor, which provided two additional bands of costal/aerosol and cirrus. In fact, those bands are known as functioned effectively in detecting and restoring shades. Otsu's thresholding technique to detect clouds, we replaced those detective shades by using experimental and reference images. In accurate assessment, the overall accuracy and kappa coefficients were about 85% and 0.7128, respectively. This indicates that the proposed technique is effective for recovering the original land surface.

Taxonomic study on Korean Aphyllophorales (II) -on some unrecorded species- (한국산 민주름버섯목의 분류학적 연구 (II) -수종 미기록종에 대하여-)

  • Jung, Hack-Sung
    • The Korean Journal of Mycology
    • /
    • v.24 no.3 s.78
    • /
    • pp.228-236
    • /
    • 1996
  • Flesh fungi were collected during field trips to mountain areas throughout the country from May to October of 1994. Through the observation and identification of specimens belonging to the Aphyllophorales, one genus, Tylospora, and six species, Athelia fibulata, Hypochnicium punctulatum, Tylospora fibrillosa, Stereum ochraceo-flavum, Steccherinum litschaueri, and Oligoporus undosus were confirmed new to Korea and are registered here with descriptions.

  • PDF