본 논문에서는 퍼지 추론 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다 영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시 영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법 이 기존의 양자화를 적용한 방법보다 구름의 분석 성능이 개선된 것을 확인하였다.
처녀이끼과 신분류군 구름처녀이끼(Hymenophyllum wrightii f. serratum C.S. Lee & K. Lee)가 한국의 제주도 한라산에서 발견되어 기재되었다. 구름처녀이끼는 처녀이끼에 비하여 잎은 키가 작고, 잎몸의 맨아랫부분은 넓으며, 잎몸은 넓은 난형이고 포자낭군이 더 크며 포막의 입술 가장자리가 세열된 점이 뚜렷이 구별된다. 새로운 국명은 높은 산에 서식한다는 의미로 구름처녀이끼로 하였고, 주요형질에 대한 종기재 및 해부도와 서식지 식물사진 및 한국산 처녀이끼속 식물에 대한 검색표를 제시하였다.
GOCI 영상은 육상 관측에 적합한 공간해상도와 빠른 관측주기를 가지고 있지만, 현재까지 육상분야에 활용된 예가 많지 않다. GOCI 영상이 육상분야에 활용되기 위해서는 정교한 전처리가 수행되어 신뢰성을 갖춘 기본적인 산출물 형태로 제공되어야 한다. 본 연구에서는 GOCI 영상의 육상 활용을 위하여 구름의 영향이 최소화된 기본 산출물 제작에 필요한 구름 탐지 기법을 제안하였다. GOCI 영상은 구름 탐지에 효과적인 단파적외선(SWIR)과 열적외선(TIR) 밴드가 없기 때문에, 이 연구에서는 GOCI 영상의 장점인 빠른 관측 주기로 얻어지는 많은 다중시기영상을 이용하여 구름을 탐지하는 방법을 개발하였다. 제안한 구름탐지 기법은 세 단계로 구성된다. 1단계와 2단계에서는 1번 밴드 반사율과 1번과 8번 밴드의 반사율 비(b1/b8)에 임계값을 적용하여 완전 맑음(confident clear)과 두꺼운 구름(thick cloud)을 구분했다. 마지막 단계에서는 3일 동안 얻어진 b1/b8 값의 평균을 임계값으로 하여 얇은 구름(thin cloud)을 구분하였다. 이러한 순차적인 구름탐지 알고리즘을 적용하여 모두 4개의 등급으로 분류하였다. 본 연구에서 제안한 기법을 GOCI 영상에 적용 후 그 결과를 MODIS 구름 산출물(cloud mask products)과 비교 검증하였다. 여러 시기의 영상에서 추출된 구름 면적을 비교한 결과 평균제곱근오차(RMSE)가 10% 미만으로 MODIS 구름 산출물과 유사한 결과를 얻었다. 육안 분석을 통해 구름의 공간적인 분포를 비교한 결과, MODIS 산출물과 비슷한 구름 분포를 보여주었다.
구름은 광학위성을 이용한 국토 관측 및 재난 대응, 변화 탐지 등 지표의 현상을 관측하는데 있어 많은 어려운 문제를 야기한다. 구름의 존재는 영상 처리 단계 뿐만 아니라 최종적으로는 데이터의 품질에 영향을 미치므로 이를 반드시 식별하고 제거하는 과정이 필요하다. 따라서 본 연구에서는 위성영상 내 구름의 분광패턴에 가장 근접한 화소를 탐색 및 추출해 최적의 임계값을 선정하고 임계값을 바탕으로 구름 산출물을 제작하는 일련의 과정을 자동으로 수행하는 새로운 구름 탐지 기법을 개발하고자 하였다. 구름 탐지 기법은 크게 세 단계로 구성된다. 첫 번째 단계에서는 Digital Number (DN) 단위 영상을 대기상층 반사율 단위로 변환하는 과정을 수행한다. 두 번째 단계에서는 대기상층 반사율 영상을 이용하여 Hue-Value-Saturation (HSV) 변환 및 삼각형 임계 처리, 최대우도 분류 등의 전처리를 적용하고 각 영상별로 초기 구름 마스크 생성을 위한 임계값을 결정한다. 세번째 후처리 단계에서는 생성된 초기 구름 마스크에 포함된 노이즈를 제거하고 구름 경계 및 내부를 개선한다. 구름 탐지를 위한 실험 자료로 구름의 공간적, 계절적 분포의 다양성을 보여주는 4~11월 시기에 한반도 지역에서 촬영된 국토위성 L2G 영상을 사용하였다. 제안 방법의 성능을 검증하기 위해 단일 임계화 방법으로 생성된 결과를 비교하였다. 실험 결과, 제안 방법은 기존 방법과 비교하여 전처리 과정을 통해 각 영상의 방사학적 특성을 고려할 수 있어 보다 정확하게 구름을 검출할 수 있었다. 또한, 구름 개체를 제외한 나머지 밝은 물체(판넬식 지붕, 콘크리트 도로, 모래 등)의 영향을 최소화하는 결과를 보여주었다. 제안 방법은 기존 방법 대비 F1-score 기준으로 30% 이상의 개선된 결과를 보여주었으나 눈이 포함된 특정 영상에서 한계점이 있었다.
이 논문에서는 구름과 같은 기상 상태의 제약 없이 자료 획득이 가능한 SAR 자료를 이용하여 토지 피복 특성을 구분하고자 하였다. 기존 단일 주파수, 편광 상태의 자료만을 제공하는 SAR 자료를 이용한 분류에서의 낮은 분류 정확도를 향상시키고자 이 논문에서는 다중 시기 C 밴드 자료이면서 서로 다른 편광 상태의 자료를 제공하는 Radarsat-1(HH)와 ENVISAT(VV) 자료를 분류에 이용하였다. 분류 기법으로 Random Forests를 적용한 결과, 단일 편광 상태의 자료만을 이용하였을 때에 비해서 보다 향상된 분류 정확도를 얻을 수 있었다.
한국의 십자화과 꽃다지속 식물 우수리꽃다지 (Draba ussuriensis Pohle)를 백두산에서 새로이 발견하여 보고한다. 본종의 특징은 꽃이 흰색이고 다년생인 점이 구름꽃다지(Draba mongolica Turczaninow)와 유사하지만, 줄기와 과경에 털이 없고 경엽의 수가 작은 점이 구름꽃다지와 다르다. 국명은 학명의 종소명에서 유래한 이름을 사용하였다. 또한 과거 백두산 및 관모봉 지역에서 자라는 구름꽃다지는 D. incana L., D. glabella Pursh, D. nipponica Makino, D. daurica DC. 등으로 혼돈하여 알려졌다. 그러나 백두산 및 관모봉에서 채집한 표본들을 조사하고 유연종들과 비교분석한 결과 D. mogolica로 밝혀져 그간 잘못 사용된 학명을 바로 잡았다. 따라서 한국산 꽃다지속 식물은 흰꽃 피는 두 종과, 노란색 꽃이 피는 꽃다지를 포함하여 총 3종이 분포한다.
대한민국 기상청에서 사용하고 있는 UM (Unified Model, UM) 모델의 국지예측시스템(Local Data Assimilation and Prediction System, LDAPS)은 수치모델 모의 시 대기경계층 유형에 따라 물리과정을 다르게 계산하기 때문에 이 과정을 검증하는 것은 모델의 정확도 향상에 중요하다. 따라서, 본 연구에서는 수치모델의 대기경계층 유형을 관측자료를 기반으로 검증하였다. 관측자료를 기반으로 대기경계층 유형을 분류하기 위해서 보성 표준기상관측소에서 수행한 여름철 집중관측자료(라디오존데, 플럭스관측장비, 도플러 라이다, 운고계)를 활용하였으며, 2019년 6월 18일 부터 8월 17일 까지 61일 동안에 총 201회의 관측자료를 분석하였다. 또한 관측자료와 수치모델 결과가 다른 경우를 보면, 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 2유형으로 분류되는 사례가 수치모델에서는 1유형으로 분류된 사례가 53회로 가장 많이 나타났다. 그 다음으로는 관측자료를 기반으로 한 대기경계층 유형 분류 결과에서 5유형과 6유형으로 분류되는 사례가 수치모델에서는 3유형으로 분류된 사례가 많이 나타났다(각각 24회, 15회). 관측결과와 수치모델 모의 결과가 일치하지 않은 사례는 모두 층적운 접합 여부 및 적운 모의 등 수치모델의 구름물리 부분의 모의 성능에 기인하여 발생한 것이라고 분석된다. 따라서, 대기경계층 유형 분류의 구름물리과정의 모의 정확도를 개선하면 수치모델 성능이 향상 될 것으로 판단된다.
본 연구는 SPOT-4 위성의 VEGETATION-1 센서의 가시 채널, 근적외 채널, 단파 적외채널 자료를 이용하여 눈과 구름을 구별하기 위해 새롭게 제시된 알고리즘을 평가하기 위한 것이다. 눈과 구름의 마스크를 위해 전통적으로 이용되고 있는 임계치 방법들은 본 연구에서 좋은 결과를 보여 주지 못하였다 따라서 K-means 군집화 방법이 이러한 임계치 방법 대신 본 연구에서 사용되었다. 군집화에서는 두 임계치 알고리즘을 통합하여 적설과 구름을 그룹화 시켜 동시에 추출한 화소들을 적용하였다. 이것은 전체 영상을 군집화에 적용시킬 때와 비교해 군집화의 과정을 단순화시키고 나아가 정확도를 향상시킬 수 있다. 본 연구는 이러한 과정을 통해 얻어진 결과를 임계치 방법이 적용되었을 때의 결과와 비교함과 동시에 VEGETATION 자료의 분별능력을 평가하였다. 본 연구에서 제시한 방법을 이용하였을 때, 구름과 눈의 분별 능력은 상당히 향상되었다. 분별 오차는 임계치 방법을 사용하였을 때 보다 구름에 대해 19.4% 적설에 대해 9.7% 정도 감소하였다.
Landsat은 대표적인 지구관측 위성 중 하나로 지표면 모니터링, 변화탐지, 분류 등 다양한 분야에서 사용되고 있다. 하지만 구름과 구름의 그림자는 지표의 관측과 분석을 제한하는 장애물 중 하나로, Landsat을 사용하기 전 구름을 제거하고 원래의 지표 피복으로 복원하는 과정은 필수적이다. 최근에 발사된 Landsat-8은 기존위성에 비해 2개의 추가적인 costal/aerosol, cirrus 밴드를 제공하며, 이는 구름을 탐지하고 복원하는데 효율적으로 사용될 수 있다. 따라서 본 연구에서는 Landsat-8의 영상에서 구름을 효과적으로 탐지하고, 복원하는 기법을 단계적으로 제안하였다. Otsu 임계화 기법을 통하여 구름과 구름의 그림자 지역을 탐지하였고, 탐지된 구름 및 그림자 지역은 실험 영상과 참조영상을 이용하여 원래의 지표 피복으로 복원 하였다. 복원영상의 정확도 평가에서는 전체정확도가 약 85%, 카파계수가 0.7128로 본 연구에서 제안한 알고리즘이 효율적임을 확인하였다.
1994년 5월부터 1994년 10월까지 도합 11차례에 걸쳐 우리나라 전역의 11개 지역을 탐색하여 290점의 목재부후균류 표본을 확보하고 최근의 분류체계를 따라 자실체의 형태학적인 관찰을 통하여 분류 동정하였다. 그중 가장 많은 종류를 차지하는 종류는 민주름버섯목 균류로서 7과 42속 57종으로 집계되었으며 이들 중 도합 1속 6종이 국내 미기록으로 판명되었다. 해당 미기록속은 고약버섯과의 가루고약버섯속(신칭, Tylospora)으로 그리고 해당 미기록종은 고약버섯과의 조각부후고약버섯(신칭, Athelia fibulata), 백설후막고약버섯(신청, Hypochnicium punctulatum), 흰가루고약버섯(신칭, Tylospora fibrillosa), 꽃구름버섯과의 배착꽃구름버섯(신칭, Stereum ochraceo-flavum), 수염버섯과의 흰바늘버섯(신칭, Steccherinum litschaueri), 그리고 구멍장이버섯과의 배착손등버섯(신칭, Oligoporus undosus)으로 동정되었다. 최근 정학성은 한국산 목재부후균류의 분포상에 대한 연구 제 2보를 통하여 국내의 15개 국립공원과 7개 일반 지역 및 2개 도서지역을 탐색한 결과 국내 목재부후균류의 민주름버섯류를 217종과 1변종으로 확인한바 있으며, 이어 균학회지에 게재한 한국산 민주름버섯목의 분류학적 연구 제 1보에서 추가로 발표한 1속 6종 미기록종과 함께 본 연구의 결과를 합산하면 한국산 목재부후 민주름버섯류는 도합 17과 101속 230종 1변종으로 집계되었다 이들 미기록종 균류는 관악산, 덕유산, 소백산, 지장봉, 및 천마산에서 채집되었으며 섬유부후고약버섯과 배착꽃구름버섯은 참나무, 흰바늘버섯은 단풍나무, 주로 침엽수에 서식하는 배착손등버섯은 딱총나무, 삼림의 부후재목과 부식토에서 발견되는 흰가루고약버섯은 미확인 활엽수, 그리고 낙엽송과 향나무와 같은 침엽수 위주의 숙주에 서식하는 백설후막 고약버섯은 참나무와 같은 활엽수에서도 발견되었다. 그중 백설후막고약버섯과 배착꽃구름버섯은 경기도 남양주군 화도면 천마산에서 그리고 백설후막고약버섯과 흰가루고약버섯 및 배착손등버섯은 경기도 포천군 관인면 지장봉에서 채집되었는데 이들 지역은 그간 균류조사의 미답지였으며 본 연구를 통하여 이들 지역의 균류 분포상의 다양성과 특이성을 처음으로 알 수 있었다. 과거에 조사된 균류의 분포 기록을 참조하여 볼 때 경기도 남양주군 진접읍 광릉 일대에서 다양한 균류상이 계속적으로 보고되어 왔는데 금번 조사를 통하여 경기도 포천군과 광릉 지역을 포함한 남양주군 일대가 민주름버섯류의 분포상 연구에도 매우 이상적인 지역으로 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.