DOI QR코드

DOI QR Code

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow

SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘

  • 한경수 (프랑스 기상청 기상연구소) ;
  • 김영섭 (부경대학교 위성정보과학과)
  • Published : 2004.08.01

Abstract

This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

본 연구는 SPOT-4 위성의 VEGETATION-1 센서의 가시 채널, 근적외 채널, 단파 적외채널 자료를 이용하여 눈과 구름을 구별하기 위해 새롭게 제시된 알고리즘을 평가하기 위한 것이다. 눈과 구름의 마스크를 위해 전통적으로 이용되고 있는 임계치 방법들은 본 연구에서 좋은 결과를 보여 주지 못하였다 따라서 K-means 군집화 방법이 이러한 임계치 방법 대신 본 연구에서 사용되었다. 군집화에서는 두 임계치 알고리즘을 통합하여 적설과 구름을 그룹화 시켜 동시에 추출한 화소들을 적용하였다. 이것은 전체 영상을 군집화에 적용시킬 때와 비교해 군집화의 과정을 단순화시키고 나아가 정확도를 향상시킬 수 있다. 본 연구는 이러한 과정을 통해 얻어진 결과를 임계치 방법이 적용되었을 때의 결과와 비교함과 동시에 VEGETATION 자료의 분별능력을 평가하였다. 본 연구에서 제시한 방법을 이용하였을 때, 구름과 눈의 분별 능력은 상당히 향상되었다. 분별 오차는 임계치 방법을 사용하였을 때 보다 구름에 대해 19.4% 적설에 대해 9.7% 정도 감소하였다.

Keywords

References

  1. Baghdadi, N., Y. Gauthier, and M. Bernier, 1997. Capability of mitemporal ERS-1 SAR data for wet-snow mapping, J. Remote Sens. Environ., 60: 174-186 https://doi.org/10.1016/S0034-4257(96)00180-0
  2. Baum, B. A. and Q. Trepte , 1999. A grouped thershold approach for scene identification in AVHRR imagery, J. Atmos. Ocean. Technol., 16: 793-800 https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2
  3. Davis, P., L. L. Stowe, and E. P. McClain, 1993. Development of a cloud layer detection algorithm for the clouds from AVHRR (CLAVR) Phase II Code, Proc. SPIE Symp
  4. Fily, M., 1998. An tarctic snow characteristics from POLDER and SPOT4-VEGETATION data, VEGETATION prelaunch phase report, 96/CNES/0394, 12p
  5. Gesell, G., 1989. An algorithm for snow and ice detection using AVHRR data: An extension to the APOLLO software package, Int. J. Remote Sens., 10: 897-905 https://doi.org/10.1080/01431168908903929
  6. Guneriussen, T., 1997. Backscattering properties of a wet snow cover derived from DEM corrected ERS-l SAR data, Int. J. Remote Sens., 18-2: 375-392
  7. Gustafson, G. B., and Coauthors, 1994. Support of environmental requirements for cloud analysis and archive (SERCAA): Algorithm descriptions, Rep. PL-TR 94-2114, Phillips Laboratory, MA., USA, 108p
  8. Jensen, J. R., 1994. Introductory Digital Image Processing: A remote sensing perspective, New Jersey: Prentice Hall, pp. 316
  9. Lissens, G., P. Kempeneers, and F. Fierens, 2000. Development of a cloud, snow and cloud shadow mask for VEGETATION imagery, Proc. VEGETATION 2000, pp. 303-306
  10. Ramos, V. and F. Muge, 2000. On quantitative relationships between image filtering, noise and morphological size/ intensity diagrams Proc. Int. Symp. Mathemat. Morphol. Appli. Image Signal, CD-Rom
  11. Riggs, G.A, D. K. Hall, and V. Salomonsen, 1994. A snow index for the Landsat Thematic Mapper and moderate resolution imaging system, Proc. IGARSS '94, 1942-1944
  12. Rossow, W. B. and L. C. Garder, 1993. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP, J. Climate, 6:2341-2369 https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
  13. Saunders, R. W. and K. T. Kriebel, 1988. An improvement method for detecting clear sky and cloudy radiances from AVHRR data, Int. J. Remote Sens., 9:123-150 https://doi.org/10.1080/01431168808954841
  14. Stowe, L. L., E. P. McClain, R. Carey, P. Pellegrino, and G. G. Gutman, 1991. Global distribution of cloud cover derived from NOAA/ AVHRR operational satellite data, Adv. Space Res., 11: 51-54
  15. Stowe, L. L., S. K. Vemury, and A. V. Rao, 1994. AVHRR clear-sky radiation data sets at NOAA/NESDIS, Adv. Space Res., 11: 113-116
  16. Xiao, X., Z. Shen, and X. Qin, 2001. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: a Normalized Difference Snow and Ice Index, Int. J. Remote Sens., 22-13: 2479-2487