• Title/Summary/Keyword: 교통정보 추출

Search Result 297, Processing Time 0.022 seconds

Near-field Data Exchange by Motion Recognition of mobile phone (모바일 폰의 모션 인식에 의한 근거리 데이터 교환)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.800-801
    • /
    • 2017
  • Location-based services (LBS) are used in various applications such as emergency support, navigation, location, traffic routes, information gathering, and entertainment due to the rapid growth of information communication technologies and mobile phones. In general, locations are represented by coordinates and are related to terrain. These are of great interest in mobile-based data transmission. This paper proposes a method to exchange the contact of the other party by detecting the movement of the mobile phone of the individual user based on the location-based service. The proposed method extracts motion using the acceleration sensor of the mobile phone and transmits the location and time information to the server when the motion continues for a predetermined time. Attempts to establish a connection between users who are experiencing motion in mobile phones in the short distance have been made from the server. Once the connection between the users is made, the encrypted contact is received from the server. Experimental results show that the proposed method can exchange data by minimizing the processing in the handset compared with the existing method.

  • PDF

Deep learning based symbol recognition for the visually impaired (시각장애인을 위한 딥러닝기반 심볼인식)

  • Park, Sangheon;Jeon, Taejae;Kim, Sanghyuk;Lee, Sangyoun;Kim, Juwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Recently, a number of techniques to ensure the free walking for the visually impaired and transportation vulnerable have been studied. As a device for free walking, there are such as a smart cane and smart glasses to use the computer vision, ultrasonic sensor, acceleration sensor technology. In a typical technique, such as techniques for finds object and detect obstacles and walking area and recognizes the symbol information for notice environment information. In this paper, we studied recognization algorithm of the selected symbols that are required to visually impaired, with the deep learning algorithm. As a results, Use CNN(Convolutional Nueral Network) technique used in the field of deep-learning image processing, and analyzed by comparing through experimentation with various deep learning architectures.

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

Design and Implementation of Smart LED Bicycle Helmet using Arduino (아두이노를 이용한 스마트 LED 자전거 헬멧의 설계 및 구현)

  • Ahn, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1148-1153
    • /
    • 2016
  • The number of cyclists is on the steady growing for leisure and transportation with the increasing interest in health and environment. However, the number of cycling accidents is also increasing steadily due to the lack of safety awareness and regulations. Focusing on this issue, we propose and develop a smart LED bicycle helmet in order to reduce a risk of cycling accident. The main idea is to change status of the LED on the helmet based on the bicycle's movement and provide motion information of the bicycle for others. To control the LED lights on the helmet, we use the Arduino board which communicates with the LED module through serial connection. We decide motion information by using the values from acceleration and GPS sensors of the smartphone. To receive this information from the smartphone, the control board and the smartphone are connected by Bluetooth.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Analysis of the Severity of Self-Esteem Reduction Using Text Mining (텍스트 마이닝을 이용한 자존감 저하의 심각성 분석)

  • Kim, Beom-su;Hwang, Yeong-bin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.47-51
    • /
    • 2021
  • In this study, we try to find out and analyze the results of reduced self-esteem and loss using text mining. Physical health is important, of course, but these days, mental health is considered more important. In order for the mind to be healthy, it is important to have self-esteem and self-confidence first. Self-esteem decreases, and if lost, it directly leads to depression. If depression is severe, the worst will lead to self-harm and suicide. However, more and more people are committing suicide these days because both ordinary people and entertainers cannot overcome depression. For this reason, the seriousness of depression and loss of self-esteem are also considered important and become an issue. Therefore, we want to collect data for a certain period of time through Naver, Instagram, and Twitter searches and extract the words of the data to anticipate and analyze the cause of loss of self-esteem, how serious the recent depression is, and what the consequences of loss of self-esteem are.

  • PDF

A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis (빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구)

  • Jeong, Myoung Gyun;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.682-690
    • /
    • 2020
  • Purpose: This study builds a database by collecting and refining disaster occurrence data and real-time weather and atmospheric data. In conjunction with the public data provided by the API, we propose a service model for the Big Data-based Urban Safety Index. Method: The plan is to provide a way to collect various information related to disaster occurrence by utilizing public data and SNS, and to identify and cope with disaster situations in areas of interest by real-time dashboards. Result: Compared with the prediction model by extracting the characteristics of the local safety index and weather and air relationship by area, the regional safety index in the area of traffic accidents confirmed that there is a significant correlation with weather and atmospheric data. Conclusion: It proposed a system that generates a prediction model for safety index based on machine learning algorithm and displays safety index by sector on a map in areas of interest to users.

The Spatial Characteristics of Real-time Population Distribution in Seoul based on the Media Users' Time-space Information for The Activity Spaces (미디어 이용자의 활동공간 시.공간 정보를 활용한 서울의 실시간 인구 분포 분석)

  • Lee, Keumsook;Kim, Ho Sung;Lee, Soo Young
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.87-102
    • /
    • 2015
  • This study attempts to introduce the methodology for accounting real-time population distribution in the urban areas. For the purpose, we utilize the media user's time-space information from the media users' media diaries in the media panel survey databases. We analyze the space-time population rate for each activity space related with everyday urban lifes. Seoul has been selected as a case study area, since space-time information are relatively rich there, and thus the comparisons are available. The space-time population rates have been verified by the comparative analysis with the T-card results. We propose a real time population measurement method by combination of the space-time population rate with geographical data. The real time population of each activity space at each dong in Seoul has been calculated by multiplying the space-time population rates to the numbers of employer of three categories of activity spaces(residential, working, and commercial). By utilizing GIS, we visualize the results of two time points (3AM and 3PM) and then analyze the spacio-temporal characteristics of real time population distribution in Seoul. The Day time population distribution pattern shows strong relationships with the distribution of business and commercial activities, while the night time population distribution pattern can be explained by resident population distribution almost perfectly.

  • PDF

Feature Extraction for Bearing Prognostics based on Frequency Energy (베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출)

  • Kim, Seokgoo;Choi, Joo-Ho;An, Dawn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.128-139
    • /
    • 2017
  • Railway is one of the public transportation systems along with shipping and aviation. With the recent introduction of high speed train, its proportion is increasing rapidly, which results in the higher risk of catastrophic failures. The wheel bearing to support the train is one of the important components requiring higher reliability and safety in this aspect. Recently, many studies have been made under the name of prognostics and health management (PHM), for the purpose of fault diagnosis and failure prognosis of the bearing under operation. Among them, the most important step is to extract a feature that represents the fault status properly and is useful for accurate remaining life prediction. However, the conventional features have shown some limitations that make them less useful since they fluctuate over time even after the signal de-noising or do not show a distinct pattern of degradation which lack the monotonic trend over the cycles. In this study, a new method for feature extraction is proposed based on the observation of relative frequency energy shifting over the cycles, which is then converted into the feature using the information entropy. In order to demonstrate the method, traditional and new features are generated and compared using the bearing data named FEMTO which was provided by the FEMTO-ST institute for IEEE 2012 PHM Data Challenge competition.

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF