• Title/Summary/Keyword: 교통정보 추출

Search Result 297, Processing Time 0.022 seconds

Video Big Data Processing Scheme for Spatio-Temporal Analysis of Moving Objects (움직이는 물체의 시공간 분석을 위한 동영상 빅 데이터 처리 방안)

  • Jung, Seungwon;Kim, Yongsung;Jung, Sangwon;Kim, Yoonki;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.833-836
    • /
    • 2017
  • 최근 블랙박스 및 CCTV 같은 영상 촬영 장치가 보편화되면서, 방대한 양의 영상 데이터가 실시간으로 생성되고 있다. 만약 이 대용량 데이터 안의 차량 정보를 추출할 수 있다면 범죄 차량 추적, 교통 혼잡도 측정 등의 활용이 가능할 것이다. 이를 구현하기 위해서는 수많은 자동차에서 실시간으로 생성되는 영상 데이터를 처리할 수 있는 시스템이 필수적이나, 이러한 시스템을 찾기 힘든 것이 현실이다. 이를 위해 이 논문에서는 아파치 카프카, Hbase를 이용한 영상 빅데이터 처리 시스템을 제안한다. 아파치 카프카는 시스템 내에서 영상 손실이 없는 전송과 영상 처리 노드의 스케줄링을 수행하며, Hbase는 처리된 데이터를 테이블로 저장하고 사용자가 보낸 쿼리를 처리한다. 더불어, Hbase에 인덱스를 구성하여 빠른 쿼리 처리가 가능하도록 만든다. 실험 결과, 제안된 시스템은 인덱스가 없을 때보다 뛰어난 쿼리 처리 성능을 보이는 것을 확인할 수 있었다.

Application of the Flow-Capturing Location-Allocation Model to the Seoul Metropolitan Bus Network for Selecting Pickup Points (서울 대도시권 버스 네트워크에서 픽업 위치 선정을 위한 흐름-포착 위치-할당 모델의 적용)

  • Park, Jong-Soo
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.127-132
    • /
    • 2012
  • In the Seoul metropolitan bus network, it may be necessary for a bus passenger to pick up a parcel, which has been purchased through e-commerce, at his or her convenient bus stop on the way to home or office. The flow-capturing location-allocation model can be applied to select pickup points for such bus stops so that they maximize the captured passenger flows, where each passenger flow represents an origin-destination (O-D) pair of a passenger trip. In this paper, we propose a fast heuristic algorithm to select pickup points using a large O-D matrix, which has been extracted from five million transportation card transactions. The experimental results demonstrate the bus stops chosen as pickup points in terms of passenger flow and capture ratio, and illustrate the spatial distribution of the top 20 pickup points on a map.

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.

Detecting Space-Time Clusters in Linear Point Data (선형 점자료에 있어서의 시.공 복합 군집의 탐색)

  • 홍상기
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.2
    • /
    • pp.325-338
    • /
    • 1998
  • 본 연구에서는 시.공 복합적인 선형 점 자료를 대상으로 시간과 공간을 함께 고려했을 때 자료 내에 군집(cluster)-시.공 복합 군집(space-time cluster)-이 존재하는 가를 검증하는 방법에 대해 논의하고, 실제 교통사고지점의 분포자료를 분석하여 군집의 유무를 통계적으로 검증하였다. 통계 분석의 결과 다음과 같은 사실이 확인되었다. 첫째, Knox의 분할표 방법과 Mantel의 역수 변환을 이용한 일반화된 회귀분석방법 모두 임계 거리 및 임계 시간 간격의 선택이 분석결과에 영향을 미친다. 둘째, 이러한 임의성을 극복하기 위해 다양한 임계 거리 및 임계 시간 간격(혹은 부가 상수)에 대해 반복 실험한 결과, 일부 임계값의 조합에서 시간과 공간이 서로 독립적이라는 귀무가설을 기각할 수 있는 증거가 발견되었다. 셋째, 시.공 복합 군집의 파악에 가장 적합한 임계 거리와 임계 시간 간격은 공간적으로는 7000m, 시간적으로는 14일 혹은 21일이다. 마지막으로, 통계 분석과정에서 자료에 존재하는 중복 기록 사고들의 존재가 밝혀짐으로써 시.공 복합군집 검증이 탐험적 자료 분석(exploratory data analysis)의 도구로서 가지는 가치를 확인할 수 있었다.

  • PDF

Analysis of Ship Collision Avoidance Situation Data Using Data Science (데이터과학을 이용한 선박 충돌회피상황 데이터 분석)

  • Seung Sim;Hyung-seok Oh;Min-Jeong Sim;Jun-Rae Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.319-320
    • /
    • 2022
  • 본 논문에서는 '지능형 해상교통정보 서비스'로 축적된 선박 위치데이터를 가공하여 선박의 조우상황 데이터를 추출하고 분석하였다. 선박의 위치, 침로, 속력을 통해 TCPA, DCPA와 선박간 거리를 계산함으로써 선박의 충돌위험 인지 후 회피 상황에서 보이는 데이터의 형태와 분포를 분석하였다. 추후 상대방위와 SOG가 TCPA 변화량에 미치는 영향에 대한 연구가 진행되면, 실제 사용자의 충돌위험 판단과 근접한 충돌위험도 분석 모델로 활용할 수 있을 것으로 보인다.

  • PDF

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

A Study on the Compression and Major Pattern Extraction Method of Origin-Destination Data with Principal Component Analysis (주성분분석을 이용한 기종점 데이터의 압축 및 주요 패턴 도출에 관한 연구)

  • Kim, Jeongyun;Tak, Sehyun;Yoon, Jinwon;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.81-99
    • /
    • 2020
  • Origin-destination data have been collected and utilized for demand analysis and service design in various fields such as public transportation and traffic operation. As the utilization of big data becomes important, there are increasing needs to store raw origin-destination data for big data analysis. However, it is not practical to store and analyze the raw data for a long period of time since the size of the data increases by the power of the number of the collection points. To overcome this storage limitation and long-period pattern analysis, this study proposes a methodology for compression and origin-destination data analysis with the compressed data. The proposed methodology is applied to public transit data of Sejong and Seoul. We first measure the reconstruction error and the data size for each truncated matrix. Then, to determine a range of principal components for removing random data, we measure the level of the regularity based on covariance coefficients of the demand data reconstructed with each range of principal components. Based on the distribution of the covariance coefficients, we found the range of principal components that covers the regular demand. The ranges are determined as 1~60 and 1~80 for Sejong and Seoul respectively.

An Efficient Image Retrieval Method Using Informations for Location and Direction of Outdoor Images (outdoor image의 촬영 위치와 방향 정보를 이용한 효율적인 영상 검색방법)

  • Han, Gi-Tae;Suh, Chang-Duk
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.329-336
    • /
    • 2007
  • In this paper we propose both the construction of image DB including information on the shooting location and direction of the captured outdoor images and the efficient retrieval method from the DB. Furthermore, for the automatic extraction of the location and direction information, we suggest to have the Digital Camera equipped with an expandable GPS modulo which has a function to calculate the location and direction and also to utilize GPS IFD tags in the EXIF. Then that will make it possible for us to retrieve quickly and precisely the target image with its geography and other objects on the ground included. In the previous retrieval method based only on the location, we eel some extra useless images due to the fact that all the images in the ROI(Region Of Interest) are searched on one condition, radius. However, with the proposed method in this paper, we can not only retrieve all the images selectively within the ROI but also achieve nearly 100% of precision when we search for the target images within DOI(Direction Of Interest) with another condition, direction, added. Applying this method to an image retrieval system, we can classify or retrieve natural images based on the location and direction information, which, in turn, will be vitally useful to diverse industrial fields such as disaster alarm system, fire and disaster prevention system, traffic information system, and so forth.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

A Study to Provide Real-Time Freeway Precipitation Information Using C-ITS Based PVD (C-ITS 기반 PVD를 활용한 실시간 고속도로 강수정보 수집에 관한 연구)

  • Kim, Ho seon;Kim, Seoung bum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.133-146
    • /
    • 2021
  • Providing weather information on roads today means that the road weather conditions near weather observation points are presented to road managers and road users. These weather observation points are managed by the Korea Meteorological Administration. However, it is difficult to provide accurate weather information due to physical limitations such as the presence of precipitation collection points, distance to weather information provision roads, and the presence of mountains. Therefore, this study intends to perform a comparative analysis by time zone and administrative dong provided by the Meteorological Administration using the wiper information among the information contained in the PVD(Probe Vehicle Data) collected from the highway C-ITS project. As a result of the analysis it was possible to detect rainfall even in the event of local rainfall and rainfall over a long period of time and the higher the cumulative precipitation per hour, the higher the probability of coincidence. This study is meaningful because it used PVD to solve the limitations of the existing road weather information provision method and suggested utilization plan for PVD.