• Title/Summary/Keyword: 교착어

Search Result 48, Processing Time 0.08 seconds

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Morpheme Recovery Based on Naïve Bayes Model (NB 모델을 이용한 형태소 복원)

  • Kim, Jae-Hoon;Jeon, Kil-Ho
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.195-200
    • /
    • 2012
  • In Korean, spelling change in various forms must be recovered into base forms in morphological analysis as well as part-of-speech (POS) tagging is difficult without morphological analysis because Korean is agglutinative. This is one of notorious problems in Korean morphological analysis and has been solved by morpheme recovery rules, which generate morphological ambiguity resolved by POS tagging. In this paper, we propose a morpheme recovery scheme based on machine learning methods like Na$\ddot{i}$ve Bayes models. Input features of the models are the surrounding context of the syllable which the spelling change is occurred and categories of the models are the recovered syllables. The POS tagging system with the proposed model has demonstrated the $F_1$-score of 97.5% for the ETRI tree-tagged corpus. Thus it can be decided that the proposed model is very useful to handle morpheme recovery in Korean.

Using Syntactic Unit of Morpheme for Reducing Morphological and Syntactic Ambiguity (형태소 및 구문 모호성 축소를 위한 구문단위 형태소의 이용)

  • Hwang, Yi-Gyu;Lee, Hyun-Young;Lee, Yong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.784-793
    • /
    • 2000
  • The conventional morphological analysis of Korean language presents various morphological ambiguities because of its agglutinative nature. These ambiguities cause syntactic ambiguities and they make it difficult to select the correct parse tree. This problem is mainly related to the auxiliary predicate or bound noun in Korean. They have a strong relationship with the surrounding morphemes which are mostly functional morphemes that cannot stand alone. The combined morphemes have a syntactic or semantic role in the sentence. We extracted these morphemes from 0.2 million tagged words and classified these morphemes into three types. We call these morphemes a syntactic morpheme and regard them as an input unit of the syntactic analysis. This paper presents the syntactic morpheme is an efficient method for solving the following problems: 1) reduction of morphological ambiguities, 2) elimination of unnecessary partial parse trees during the parsing, and 3) reduction of syntactic ambiguity. Finally, the experimental results show that the syntactic morpheme is an essential unit for reducing morphological and syntactic ambiguity.

  • PDF

Text Watermarking Based on Syntactic Constituent Movement (구문요소의 전치에 기반한 문서 워터마킹)

  • Kim, Mi-Young
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.79-84
    • /
    • 2009
  • This paper explores a method of text watermarking for agglutinative languages and develops a syntactic tree-based syntactic constituent movement scheme. Agglutinative languages provide a good ground for the syntactic tree-based natural language watermarking because syntactic constituent order is relatively free. Our proposed natural language watermarking method consists of seven procedures. First, we construct a syntactic dependency tree of unmarked text. Next, we perform clausal segmentation from the syntactic tree. Third, we choose target syntactic constituents, which will move within its clause. Fourth, we determine the movement direction of the target constituents. Then, we embed a watermark bit for each target constituent. Sixth, if the watermark bit does not coincide with the direction of the target constituent movement, we displace the target constituent in the syntactic tree. Finally, from the modified syntactic tree, we obtain a marked text. From the experimental results, we show that the coverage of our method is 91.53%, and the rate of unnatural sentences of marked text is 23.16%, which is better than that of previous systems. Experimental results also show that the marked text keeps the same style, and it has the same information without semantic distortion.

Morphology Representation using STT API in Rasbian OS (Rasbian OS에서 STT API를 활용한 형태소 표현에 대한 연구)

  • Woo, Park-jin;Im, Je-Sun;Lee, Sung-jin;Moon, Sang-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.373-375
    • /
    • 2021
  • In the case of Korean, the possibility of development is lower than that of English if tagging is done through the word tokenization like English. Although the form of tokenizing the corpus by separating it into morpheme units via KoNLPy is represented as a graph database, full separation of voice files and verification of practicality is required when converting the module from graph database to corpus. In this paper, morphology representation using STT API is shown in Raspberry Pi. The voice file converted to Corpus is analyzed to KoNLPy and tagged. The analyzed results are represented by graph databases and can be divided into tokens divided by morpheme, and it is judged that data mining extraction with specific purpose is possible by determining practicality and degree of separation.

  • PDF

Design and Implementation of a Concuuuency Control Manager for Main Memory Databases (주기억장치 데이터베이스를 위한 동시성 제어 관리자의 설계 및 구현)

  • Kim, Sang-Wook;Jang, Yeon-Jeong;Kim, Yun-Ho;Kim, Jin-Ho;Lee, Seung-Sun;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.646-680
    • /
    • 2000
  • In this paper, we discuss the design and implementation of a concurrency control manager for a main memory DBMS(MMDBMS). Since an MMDBMS, unlike a disk-based DBMS, performs all of data update or retrieval operations by accessing main memory only, the portion of the cost for concurrency control in the total cost for a data update or retrieval is fairly high. Thus, the development of an efficient concurrency control manager highly accelerates the performance of the entire system. Our concurrency control manager employs the 2-phase locking protocol, and has the following characteristics. First, it adapts the partition, an allocation unit of main memory, as a locking granule, and thus, effectively adjusts the trade-off between the system concurrency and locking cost through the analysis of applications. Second, it enjoys low locking costs by maintaining the lock information directly in the partition itself. Third, it provides the latch as a mechanism for physical consistency of system data. Our latch supports both of the shared and exclusive modes, and maximizes the CPU utilization by combining the Bakery algorithm and Unix semaphore facility. Fourth, for solving the deadlock problem, it periodically examines whether a system is in a deadlock state using lock waiting information. In addition, we discuss various issues arising in development such as mutual exclusion of a transaction table, mutual exclusion of indexes and system catalogs, and realtime application supports.

  • PDF

Sentiment Analysis using Robust Parallel Tri-LSTM Sentence Embedding in Out-of-Vocabulary Word (Out-of-Vocabulary 단어에 강건한 병렬 Tri-LSTM 문장 임베딩을 이용한 감정분석)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The exiting word embedding methodology such as word2vec represents words, which only occur in the raw training corpus, as a fixed-length vector into a continuous vector space, so when mapping the words incorporated in the raw training corpus into a fixed-length vector in morphologically rich language, out-of-vocabulary (OOV) problem often happens. Even for sentence embedding, when representing the meaning of a sentence as a fixed-length vector by synthesizing word vectors constituting a sentence, OOV words make it challenging to meaningfully represent a sentence into a fixed-length vector. In particular, since the agglutinative language, the Korean has a morphological characteristic to integrate lexical morpheme and grammatical morpheme, handling OOV words is an important factor in improving performance. In this paper, we propose parallel Tri-LSTM sentence embedding that is robust to the OOV problem by extending utilizing the morphological information of words into sentence-level. As a result of the sentiment analysis task with corpus in Korean, we empirically found that the character unit is better than the morpheme unit as an embedding unit for Korean sentence embedding. We achieved 86.17% accuracy on the sentiment analysis task with the parallel bidirectional Tri-LSTM sentence encoder.

Teaching Process Synchronization with the Bank Account Problem (은행계좌 문제를 사용한 프로세스 동기화 교육)

  • Yang, Hee-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.359-368
    • /
    • 2014
  • Process synchronization is one of the most difficult subject for students learning the Operating System courses. It is due to the fact that concurrent process environment, where many events occur at the same time, is difficult to understand for ordinary human who thinks only one thing at a time. Classical synchronization examples like the Bounded buffer problem or the Dining philosopher problem fail to hook attention and interest from lower grade students who just begin to study the Operating System courses in college because these examples are either too technical or too unrealistic. In this paper we propose another synchronization example named the Bank account problem as an alternative to the classical ones. Bank account problem is proved to succeed getting high interest and understanding from the student as it is easy and realistic, and almost every student has the experience using bank account in real life. Various synchronization subjects including controlling the execution sequence of each process, incorrect result due to the race conditions, use of semaphores, deadlock, and monitor are considered to apply them to the Bank account problem.