• Title/Summary/Keyword: 교차로접근로

Search Result 115, Processing Time 0.021 seconds

A Study on the Performance Evaluation Measures of Traffic Signal Operation at Signalized Intersections by Utilizing Historical Data from Advanced Traveller Information System (첨단 교통 정보 시스템 누적 소통정보를 활용한 신호교차로 운영개선 효과평가를 위한 혼잡강도 지표 연구)

  • Cho, Yong-bin;Kim, Jin-tae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.643-654
    • /
    • 2018
  • In order to understand and manage traffic flows in urban areas in the past, a variety of traffic engineering theoretical indicators such as intersection lag and highway speed have been applied. However, these theories and indicators have been developed under the constraints of traffic engineering research before the construction of intelligent transportation system. Since the ATIS system currently exists, it is necessary to introduce a separate traffic engineering technology that utilizes the data. In this paper, it is aimed to confirm whether it is applicable to intermittent flow (approach road, intersection, control group, main road axis) by using 'congestion intensity' which is already used in traffic engineering field. The results of this study are as follows: (1) The traffic signal improvement effect of urban road access road, intersection road, control group, Two verification studies were performed to verify the derived congestion intensity index. (1) verification of congestion intensity threshold value analysis and (2) crossing improvement using the congestion intensity. Through verification, it was confirmed that it is possible to apply the congestion intensity in the inter - city intermittent flow using the 5 - minute unit speed data so as to be able to escape from the existing traffic signal operation management which is past passive and manpower limit.

Development of the U-turn Accident Model at Signalized Intersections in Urban Areas by Logistic Regression Analysis (로지스틱 회귀분석에 의한 도시부 신호교차로 유턴 사고모형 개발)

  • Kang, Jong Ho;Kim, Kyung Whan;Kim, Seong Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1279-1287
    • /
    • 2014
  • The purpose of this study is to develop the U-turn accident model at signalized intersections in urban areas. The characteristics of the accidents which are associated with U-turn operation at 3 and 4-legged signalized intersections was analyzed and the U-turn accident model was developed by regression analysis in Changwon city. First, in order to analyze the effectiveness on traffic accidents by U-turn installation, the difference of mean of traffic accident number are measured between two groups which are composed by whether or not U-turn installation the groups by Mann-Whitney U test. The result of significance test showed that intergroup comparison on mean by accident types made difference except rear-end accident type and by accident locations exit section only showed difference in significance level at 4-legged intersections, so the accident number have more where the U-turn is permitted than not. Response measures about the number of accidents were classified by whether accidents occurred and accident model were constructed using binomial logistic regression analysis method. The developed models show that the variables of conflict traffic, number of opposing lane are adopted as independent variable for both intersections. The variables of longitudinal grade for 3-legged signalized intersection and number of crosswalk for 4-legged signalized intersection at which the U-turn is permitted is adopted as independent variable only. These study results suggest that U-turn would be permitted at the intersection where the number of opposing lane is more than 3.5 each, the longitudinal grade of opposing road is upward flow and there is need to establish the U-turn traffic sign at signalized intersections.

Red Light Violations Analysis Using Statistical Methods - in case of Chungbuk 4-Legged Signalized Intersections - (통계적기법을 이용한 신호위반 분석(충청북도 4지 신호교차로를 중심으로))

  • Park, Jeong-Soon;Kim, Yun-Hwan;Jung, Woo-Teak
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • This case study investigated red light violations at CBD, suburban and rural signalized intersections in chungbuk. The goal of this study is to understanding the collection between red light violations and various driver, vehicles and environmental factors. This study uses descriptive statistics analysis and logistics analysis with SPSS 12.0 software. The major results of this study are as follows. First, red light violations occurred at rural and CBD more than suburban area. Second, About 81.1% of the violators were traveling at or below the posted speed limit. Moreover, 77.3% of the violations occurred within 2 seconds after the on set of red light. Finally, the logistic regression model, which is statistically significant(chisquare=0.000, McFadde=0.265)was developed, and includes the local type(CBD/suburban/rural), violators' gender, season, vehicle type, time of day, vehicle speed as the independent variables. In this study did not find significant relationship between red light violators' age and their driving behavior approaching signalized intersections.

Development of a Cycle-free Based, Cooridinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm) (지체도 최소화를 위한 주기변동기반 동적신호시간 결정모헝 개발)

  • 이영인;최완석;임재승
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.115-129
    • /
    • 2001
  • The purpose of this study is to develop a cycle-free signal timing model for minimizing delays based on Third-generation control concept using Genetic Algorithm. A special feature of this model is its ability to manage delays of turning movements on the cycle basis. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize delays of turning movements on the cycle basis. The performance of cycle-free signal timings was evaluated on normal (v/c = 0.7) and oversaturated (v/c=1.0) conditions. The performance measures are throughput and the number of queued vehicles at the end of green time. The result shows that the cycle free signal timing is superior to the fixed signal timing to manage traffic flows of intersections; (1) the proposed model accomplishes the basic objective of the research, producing cycle free signal timings on the cycle basis, (2) on normal conditions, cycle free signal timings produce less queued vehicles at the end of green time, and (3) on oversaturated conditions, the cycle free signal timing is superior to the fixed signal timing to manage saturated traffic flows of intersections.

  • PDF

Development of a Driver Safety Information Service Model Using Point Detectors at Signalized Intersections (지점검지자료 기반 신호교차로 운전자 안전서비스 개발)

  • Jang, Jeong-A;Choe, Gi-Ju;Mun, Yeong-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.113-124
    • /
    • 2009
  • This paper suggests a new approach for providing information for driver safety at signalized intersections. Particularly dangerous situations at signalized intersections such as red-light violations, accelerating through yellow intervals, red-light running, and stopping abruptly due to the dilemma zone problem are considered in this study. This paper presents the development of a dangerous vehicle determination algorithm by collecting real-time vehicle speeds and times from multiple point detectors when the vehicles are traveling during phase-change. For an evaluation of this algorithm, VISSIM is used to perform a real-time multiple detection situation by changing the input data such as various inflow-volume, design speed change, driver perception, and response time. As a result the correct-classification rate is approximately 98.5% and the prediction rate of the algorithm is approximately 88.5%. This paper shows the sensitivity results by changing the input data. This result showed that the new approach can be used to improve safety for signalized intersections.

Adjustment Factor for Heavy Vehicles in Estimating Capacity at Unsignalized Intersections (비신호 교차로의 중차량 용량 보정계수에 관한 연구)

  • 이용재;김석근
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.2
    • /
    • pp.89-98
    • /
    • 2001
  • The objective of this Paper is to derive an adjustment factor for the presence of heavy vehicles when estimating capacity at unsignalized intersections (and/or at modern roundabouts). According to the 1997 and 2000 Highway Capacity Manual (HCM), potential capacity in such cases is estimated by simply adjusting base critical gap and base follow-up time. However, the procedure suggested in the HCM may lead to some errors in the adjustment, hence resulting in poor evaluation and design for the intersections, because it determines the value of adjusting factors by only the number of lanes on main streets regardless of the types of heavy vehicles. This paper shows a simple formula for making the adjustment. This formula is much like the HCM formula used for heavy vehicles in estimating highway capacity by the adoption of passenger car units (PCU). In contrast to the traditional approaches seen in the HCM, the PCU value of this case is explicitly expressed by the flow rate in the major streams and the gap difference in critical gaps chosen by passenger cars and particular heavy vehicles. Computational results of the adjustment factor are graphically illustrated.

  • PDF

Estimation of Lane Utilization Adjustment Factors for Signalized Intersections Adjacent to an Off-ramp-Street Junction (연결로-일반도로 합류부와 인접한 신호교차로의 차로이용률 계수 산출)

  • Chae, Chandle;Jung, Dongwoo;Kim, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.71-78
    • /
    • 2013
  • This paper investigated the influences of ramp traffic flow on the lane utilization for signalized intersection approaches which are adjacent to an off-ramp-street junction. The statistical test showed a correlation between lane utilization and the ramp traffic flow. As the ramp traffic flow increases, the left lanes are less utilized and the right lanes are more utilized. The lane utilization factors are calculated by applying traffic data collected from the Seoul Metropolitan area. The utilization factors are 1.113 for 2 lanes, 1.124 for 3 lanes, and 1.131 for 4 lanes. The lane utilization factors proposed in the paper show higher values than those in current Korea Highway Capacity Manual (KHCM) under the conditions that the number of lanes is 2 or 3. However, the lane utilization factor for 4 lanes in the paper shows lower value than in KHCM. The ramp traffic flow causes more utilization of the right lanes than at normal signalized intersections and the extent gets larger as the number of lanes decreases. Based on the results of the paper, the lane utilization factors at signalized intersection approaches should be revised and reasonable capacity should be recalculated if the signalized intersection is adjacent to an off-ramp-street junction.

Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections (유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구)

  • Kim, Joong-Hyo;Shin, Jae-Man;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.351-360
    • /
    • 2010
  • In 2010, the number of registered vehicles reached almost at 17.48 millions in Korea. This dramatic increase of vehicles influenced to increase the number of traffic accidents which is one of the serious social problems and also to soar the personal and economic losses in Korea. Through this research, an enhanced intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network will be developed in order to obtain the important data for developing the countermeasures of traffic accidents and eventually to reduce the traffic accidents in Korea. Firstly, this research has investigated the influencing factors of road geometric features on the traffic volume of each approaching for the intersections where traffic accidents and congestions frequently take place and, a linear regression model of traffic accidents and traffic conflicts were developed by examining the relationship between traffic accidents and traffic conflicts through the statistical significance tests. Secondly, this research also developed an intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network through applying the intersection traffic volume, the road geometric features and the specific variables of traffic conflicts. Lastly, this research found out that the developed model is better than the existed forecasting models in terms of the reliability and accuracy by comparing the actual number of traffic accidents and the predicted number of accidents from the developed model. In conclusion, it is expect that the cost/effectiveness of any traffic safety improvement projects can be maximized if this developed intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network use practically at field in the future.

Bicycle Optimal Path Finding Considering Moving Loads (운행부하를 고려한 자전거 최적 경로탐색 기법)

  • Yang, Jung Lan;Kim, Hye Young;Jun, Chul Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • Recent planning for bicycle use is relatively low compared to other studies. Although studies for the bicycle roads accessibility are actively underway, those considering topographical elements and characteristics of the user behaviors are very limited. Choosing paths of cyclists is typically influenced by slopes and intersections as well as optimal distance. This study presents a method to find optimal paths considering topographical elements in case of choosing paths for school commuting using bicycles. Conversion formulae suggested here are tested on a Songpa area using round-trip directions and compared with traditional optimal path computation.

Analysis of the Entry Capacity of Roundabouts (Roundabout의 용량분석)

  • 전우훈;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.59-69
    • /
    • 2003
  • Signalized intersections are widely used in urban street network. However, it was reported that a roundabout is better than a signalized intersection in terms of delay when the approaching traffic volume for each bound is low. The objective of this study is to develop entry capacity models of roundabout and establish the warrant for signalized intersection based on the delay. The entry capacity of a roundabout is determined by the circulating traffic volume and the geometric design of the roundabout such as the diameter of central island, entry lane widths, and the circulating roadway width. The traffic and geometric characteristics of four roundabouts were collected and analyzed. The study reveals that; i)among the geometric features, the diameter of central island and the circulating roadway width influence the entry capacity, and ii)even though it is difficult to compare the models of each country due to different geometric features considered in the models, the models developed in this study show higher capacity than the models from Israel or Germany. These seem to be attributed to the facts that; i)the outside diameters of the roundabouts selected in this study are larger than in the other studies, and ii)the acceptable gap in Korea is smaller than that in the other countries. In order to compare the performances of round- about and signalized intersection, the performance of roundabouts was evaluated with the SIDRA. The simulation was conducted only for the roundabouts composed of single lane. According to the result of the analysis, it may be concluded that when the approaching traffic volume for each bound is lower than 600pcph, a roundabout is better than a signalized intersection in terms of its operational performance.