• Title/Summary/Keyword: 교정 계수

Search Result 185, Processing Time 0.025 seconds

Arch Forms & Dimensions after Orthodontic Treatment by Premolar Extraction (소구치 발치에 의한 교정치료후의 치열궁 형태 및 크기에 관한 연구)

  • Lee, Seung-Mi;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.717-729
    • /
    • 1998
  • This study was done to estimate arch forms and dimensions at the bracket level where archwire was placed in Angle's Class I first premolars extraction cases. 60 post-treatment dental casts which had attained good orthodontic treatment results were used in this study Many landmarks and linear measurement items to describe arch forms and dimensions were determined and measured. With a computer system and digitizer, arch forms were described and linear measurement items were statistically analysed. The following results were obtained. 1. The average labial and lingual arch forms at the bracket level were obtained. 2. Arch forms were expressed by parabolic equations and coefficients of determination. 3. Arch widths were larger in male than in female. 4. There were statistical significances in upper intercanine width, upper interfirst molar width, upper intersecond molar height, lower intercanine width and lower interfirst molar width between both sexes (p<0.05, p<0.01). 5. Interfirst molar width differences between maxilla and mandible were 6.43mm in male and 6.05mm in female.

  • PDF

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

Precise Baseline Measurement and Computation of Correction Factor For EDM Instrument Calibration (EDM 장비의 검교정을 위한 정밀 기선장 관측 및 보정계수 산정)

  • 조재명;윤홍식;이원춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.83-89
    • /
    • 2004
  • The electronic distance measurement instrument, first introduced in the 1950s has, since those early days, undergone continual refinement. Rapid advances in related technologies have provided lighter, smaller and more precise equipment. Understanding for the principle, the standardized observation technique and the precision of EDM instrument is mostly important to improve the quality and the reliability of by-product in the field of engineering and industrial surveying. Simple and accurate calibration is regularly and periodically necessary to maintenance the precision of EDM instrument. This paper describes the calculated example of zero error and scale error as a correction of EDM by applying the least square method to baseline observations. Here we deals also with the testing criteria for precision instrument testing according to different types of EDM instruments.

  • PDF

A Study on the Measurement Uncertainty of Pipe Prover (파이프 프루버의 측정불확도에 관한 연구)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Aerodynamic Analysis on Ski Jump Flying Postures (스키점프 비행 자세에 따른 공력 해석)

  • Son, Kap-Sik;Ryu, Min-Hyoung;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2012
  • A numerical analysis is carried out in order to obtain aerodynamic data of the ski jump. The body modelling of Korean people is used in the numerical simulation and the result is validated by comparing it with the wind tunnel experiment. A flying posture, which provides the maximum lift-to-drag ratio, is found by analyzing the aerodynamic coefficients of various flight conditions. The result of the present study can be applied to fixing the postures of Korean ski players and is expected to advance the national sports science.

A Study on Embankment Compaction Control System Using RI Gauge(II) Focuses on the Modification due to Gravel Content (RI계기를 이용한 성토시공 관리기법연구(II) -조립토함유율에 따른 보정)

  • 나경준;정두영
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.97-108
    • /
    • 1994
  • A new RI calibration curve acquired from the laboratory tests on typical embankment materials is found to be adequate for testing subgrade materials in Korea but may not be suitable for testing materials containing gravels. Therefore this study aims for the modification of RI values that enables the usage of RI to all kinds of roadbed materials. Also other factors available for the criteria of compaction control such as air void ratio and degree of saturation were reviewed for their applicability.

  • PDF

Absolute Measurement of the Quantum Efficiency of Photodetectors Using Correlated Photon Pairs (광자쌍을 이용한 광검출기의 양자효율 절대측정)

  • 안경진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.452-456
    • /
    • 1993
  • The quantum efficiencies of photomultiplier tubes were measured by counting the coincidence photon pairs generated in the process of spontaneous parametric down-conversion. They were measured within 3% accuracy over the range of wavelength from 560 to 850 nm without any standard light source or detector. The values for 633 nm correspond to those obtained with a calibrated laser power meter within the measurement error.

  • PDF

원자력연수원 시뮬레이터 2호기 노심모델 개선

  • 신호철;박종은;김용배;이용관;이상희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.91-96
    • /
    • 1997
  • 원자력연수원 시뮬레이터 2호기의 노심모델은 도입초기 WH사가 제공한 영광 1호기 노심 데이터를 그대로 사용하고 있어 기준 발전소 노심 반응(제어봉가, 붕소가, 감속재온도계수 등)과 차이를 보이고 있다. 본 논문에서는 발전소 주기 경과에 따른 노심특성 면화를 시뮬레이터 노심 모델에 반영하여 훈련원들이 실제 발전소와 유사한 상황에서 모의운전을 할 수 있도록 WH사의 핵설계 전산체계인 APA(ALPHA-PHOENIX-ANC) 시스템을 이용하여 영광 1호기 제9주기 노심모델 상수를 생산하고, 개선된 노심모델의 교정을 지원하는 윈도우 프로그램을 개발하였다. 또한 검증 계산결과를 핵설계 보고서와 비교하여 생산된 노심모델이 ANSI/ANS-3.5 성능기준을 만족함을 확인하였다.

  • PDF