• Title/Summary/Keyword: 교량 건설

Search Result 721, Processing Time 0.028 seconds

Change Analysis of Eulsukdo Wetland Using Qualitative Multi-temporal Image Data (다중시기 영상자료를 이용한 을숙도 습지 지역의 정성적 변화분석)

  • Lee, Jae-One;Kim, Yong-Suk;We, Gwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.64-73
    • /
    • 2010
  • This research collected some multi-image information of Nakdong River Estuary Eulsukdo area in last 30 years, which are used as the basis information in running the qualitative analysis of the topography relief's deformation. First, to obtain the data, this research carried out a field survey and GCP measurement, then classified and collected the image information by analog and digital image. The acquired images which have passed a high-precise scan process and geometric correction is manufactured by Ortho Mosaic image, then divided them into 9 sections time period classification before we run a qualitative analysis. In late of 1980's there are many changes of environmental topography deformation of the Eulsukdo area which caused by large scale building constructions, appeared to be known through this research. And then in late of 1990's, we organized the wild cultivated lands, started the wetland restoration of the artificial ecology, in 2000's we are able to know the existence of topograph relief change which caused by big scale of bridge construction. Hereafter, in this quick process of the environmental and topographical change of this area caused by the 4 major rivers restoration project, the analysis results of this experiment are expected to be something applicable as important basic data.

A Study on the Present Status and Future Directions of Maritime Safety Audit (해상교통안전진단제도의 운영현황과 향후 정책방향에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.399-405
    • /
    • 2011
  • Recently, the navigation risk is increasing significantly with growth of marine traffic volume and construction of marine facilities, water bridges, port development and marine wind farm etc. To reduce this kinds of risk, Ministry of Land, Transport and Maritime Affairs enacted a new law called MSA(Maritime Safety Audit) as a comprehensive maritime traffic safety management scheme in order to ensure safety improvements from the early planning stage to post managing of the development which affect the maritime traffic environment. MSA as a tool for improving maritime traffic safety is a formal safety assessment in the existing or future ship's fairway by an independent audit team. It examines the potential hazards of maritime traffic safety, if necessary, and is to ensure the implementation of appropriate safety measures. The object of this paper is to comprehensively evaluate the achievements and implementation problems of MSA about the 2 years, to define the fundamental problems of MSA by conceptualizing and analyzing MSA limits. MSA requires further examination about the introduction of screening and scoping in order to increase the efficiency and objectivity. It will be required the measures concerning policies directions as a tool for planning process for project owner. It will lead to right understanding concerning audit scheme and used in various ways such as amendments to related law.

A Study on the Stability of Foundation for Piers of WoljungGyo Bridge Built in Ancient Silla (신라시대 교량 월정교 교각기초의 복원안정성 연구)

  • Lee, Kwang-Wu;Hong, Gigwon;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.273-286
    • /
    • 2019
  • A derelict bridge called WoljungGyo was restored in Gyeongju, the capital city of ancient Silla. WoljungGyo was originally built in 760AD, and later rebuilt in 1280AD during the Goryeo Kingdom. The bridge lasted in working condition for at least 520 years. The bridge was uncovered to the remains of both abutments and four piers, with only one or two steps remaining. One of the foundation for piers showed evidence of partial settlement. The cause of the partial settlement is important for the successful restoration of the bridge so that an extensive investigation was carried out, which includes layer stratification by boring, 2-D stiffness profiling by surface-wave tests, and large scaled-plate load test for evaluating capacity. In addition to the field studies in the Woljunggyo bridge, 3-D finite element analysis was also conducted. Based on the results of the site investigation and the numerical analysis, it was concluded that the further ground improvement to build the piers was not necessary so that the gravels were placed and leveled underneath the existing pier stones to compensate partial settlement before the restoration.

Application of Linear Schedule Chart by Linking Location Information of Construction Project with Horizontal Work Space (수평작업공간을 갖는 건설프로젝트의 위치정보 연동에 의한 선형공정표 적용방안)

  • Han, Seon Ju;Kim, Hyeon Seung;Park, Sang Mi;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.601-610
    • /
    • 2018
  • Since the building construction works are repeated vertically in a limited space, there is not a great need for the location information of each activity in the schedule management. On the other hand, civil engineering works such as road and railway projects consist of a large number of earthworks, long bridges, and long tunnels. These types of work should be controlled in a horizontal space according to the linear axis of several tens of kilometers. In other words, since most of the activities are managed in the unit of distance from the start point to the end point, it is possible to improve the efficiency of the schedule management by linking the location information of the activity with the schedule data in the schedule management system. This study presents a methodology for creating a linear schedule chart specific to a project with horizontal work space and compares the convenience with the existing Gantt chart. In addition, the methodology of linking linear schedule chart to the 4D CAD system, which is a typical BIM technology in the construction phase, is presented to improve the usability of BIM. The practical applicability of the proposed methodology was verified statistically.

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

An Experimental Study on Properties of Concrete Using Latent Heat Binder (잠열성 결합재를 활용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2008
  • It is necessary to develop a new technology for effectively reducing hydration heat and controlling thermal cracking caused increasing construction of large size massive concrete structures such as mat foundation of high-rise building, grandiose bridge, and LNG tank. Therefor, to develop a new technology for reducing hydration heat of large size massive concrete in this study, after developing the latent heat binder for controling hydration heat of concrete by application of latent heat material, it was investigated basic properties and durability such as slump, air content and compressive strength, shrinkage properties, permeability, freezing and thawing resistance, corrosion, and hydration heat generation properties of concrete using latent heat binder. As a test result, it was confirmed that latent heat binder was not affected adversely the basic property and durability of concrete, and was advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size mass concrete structures.

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.

Effect of Typhoon 'Rusa' on the Natural Yeon-gok Stream and Coastal Ecosystem in the Yeong-Dong Province (영동지방 자연형 하천(강릉 연곡천)과 인근 연안 생태계에 대한 태풍 루사의 영향)

  • Yoon Yi-Yong;Kim Hung-sub
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • The yeongok stream originates at the natural park, Mt. O-dae and flows to the East Sea of korea, normally maintaining I or II grade of water quality and its average water flux is 352,100 ㎥/d. However, the typhoon 'Rusa', which occured on 31 August 2002, changed its watercourse and configuration, and the ecosystem was deeply damaged. Moreover, the hydrological characteristics were once more transformed, and the ecosystem was secondarily damaged during repair-work of destroyed bridges and elevations. After the flood disaster, the species diversity diminished 17% for attached diatom and 44% for aquatic animals. However, the earth and sand, dug from river bed during intensive repair-work throughout the entire stream, made diversity drop to 32% for the diatom and the aquatic animals were wiped out. Especially, fishes were totally destroyed except for some species such as Moroco oxycephalus in the upper stream. The yeongok stream has little contamination source and short water residence time due to the short length and rapid slope, and consequently a temporary deterioration of water quality caused by repair-work may be rapidly recovered, but it needs a long time to restore the damaged ecosystem.

  • PDF

A Study on Blasting Method for the Smallest of the Scour Depth after Pier Construction (교각의 세굴심도 최소화를 위한 발파공법 연구)

  • 김가현;김종주;안명석
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.23-35
    • /
    • 2003
  • An analytical diffusion model for flood routing with backwater effects and lateral flows is developed. The basic diffusion equation is linearized about an average depth of (H + h), and is solved using the boundary conditons which take into account the effects of backwater and lateral flows. Scouring phenomenon around pier which affects on the support function of pier and the stabilization if river bed is a complex problem depending on flow properties and river bed state as well as pier geometry. therefore, there is no uniting theory at present which would enable the designer to estimate, with confidence, the depth of scour at bridge piers. The various methods used in erosion control are collectively called upstream engineering, HEC-RAS Model, underwater blasting. They consist of reforestation, check-dam construction, planting of burned-over areas, contour plowing and regulation of crop and grazing practices. Also included are measures for proper treatment of high embankments and cuts and stabilization of streambanks by planting or by revetment construction. One phase of reforestation that may be applied near a reservoir is planting of vegetation screens. Such screens, planted on the flats adjacent to the normal stream channel at the head of a reservoir, reduce the velocity of silt-laden storm inflows that inundate these areas. This stilling action causes extensive deposition to occur before the silt reaches the main cavity of the reservoir.