• Title/Summary/Keyword: 광 자극 발광

Search Result 9, Processing Time 0.22 seconds

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

A 3-D Measuring System of Thermoluminescence Spectra and Thermoluminescence of CaSO4 : Dy, P (열자극발광 스펙트럼의 3차원 측정 장치와 CaSO4 : Dy, P의 열자극발광)

  • Lee, Jung-Il;Moon, Jung-Hak;Kim, Douk-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • In this paper, a three-dimensional measuring system of thermoluminescence(TL) spectra based on temperature, wavelength and luminescence intensity was introduced. The system was composed of a spectrometer, temperature control unit for thermal stimulation, photon detector and personal computer for control the entire system. Temperature control was achieved by using feedback to ensure a linear-rise in the sample temperature. Digital multimeter(KEITHLEY 195A) measures the electromotive force of Copper-Constantan thermocouple and then transmits the data to the computer through GPIB card. The computer converts this signal to temperature using electromotive force-temperature table in program, and then control the power supply through the D/A converter. The spectrometer(SPEX 1681) is controlled by CD-2A, which is controlled by the computer through RS-232 communication port. For measuring the luminescence intensity during the heating run, the electrometer(KEITHLEY 617) measures the anode current of photomultiplier tube(HAMAMATSU R928) and transmits the data to computer through the A/D converter. And, we measured and analyzed thermoluminescence of $CaSO_4$ : Dy, P using the system. The measuring range of thermoluminescence spectra was 300K-575K and 300~800 nm, $CaSO_4$ : Dy. P was fabricated by the Yamashita's method in Korea Atomic Energy Research Institute(KAERI) for radiation dosimeter. Thermoluminesce spectra of the $CaSO_4$ : Dy, P consist of two main peak at temperature of $205^{\circ}C$, wavelength 476 nm and 572 nm and with minor ones at 658 nm and 749 nm.

  • PDF

Cell differentiation control device capable of simultaneous stimulation of multi-wavelength LED (다파장 LED의 동시 자극 인가가 가능한 세포 분화 유도기)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.221-227
    • /
    • 2021
  • Recently, interests in mask-type skin care devices using light-emitting diodes have been increasing and optical stimuli at certain wavelengths have been known to have various therapeutic effects, such as skin whitening, acne treatment, elasticity and wrinkle improvement by controlling the exposure to wavelengths of light and irradiation time. In particular, light sources of different wavelengths are applied in masks for the purpose of suppressing skin aging, inducing cell proliferation, and alleviating skin inflammation. In this paper, we developed a light-emitting diode control system that is actively used in skin regeneration masks using a microcontroller. Optical stimuli with different manners were applied to skin fibroblast cells in a single or complex wavelengths, and then confirmed how they are effective in the cell differentiation. In addition, we found a specific wavelength that has a positive effect on cell proliferation rates, and confirm the effectiveness of cell proliferation by image processing based quantitative analysis.

Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effects (LED를 활용한 저가의 암세포 증식제어 모듈 개발 및 효과)

  • Cho, Kyoungrae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2018
  • Photodynamic therapy has been suggested as an alternative treatment to current cancer therapy which resulting in a variety of side effects because photodynamic therapy targets specific cancer cells and does not have a significant effect on normal cells. Typically, laser was used as a photodynamic therapy, but this was limited due to high cost and heat reaction. However, compact light emitting diodes that can emit light of various wavelengths have been developed at a low cost, which has a great influence on the low cost development of photodynamic therapy equipment. On the other hand, in the study of photodynamic therapy, the data on the direct effect of visible light are relatively small. Therefore, in this paper, we propose a novel cancer therapeutic module by developing a cancer cell proliferation inhibition module based on an Arduino that is relatively inexpensive, and able to use light of various wavelengths.

Defect center of $Li^{+}$ ion implanted $Al_2O_3$ ($Li^{+}$ 이온 주입된 $Al_2O_3$의 결함 특성)

  • Kim, Tae-Kyu
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.13-20
    • /
    • 1994
  • The thermoluminescence(TL) glow curves and the optical absorption of $Al_2O_3$ irradiated with ${\gamma}$-ray, electron, and $Li^{+}$ ion followed by electron irradiation have been investigated to determine the relation of TL peak to its defect type. The TL glow curve of $Al_2O_3$ irradiated with ${\gamma}$-ray shows TL peaks at 380 K, 415 K, and 475 K. The UV photobleached TL glow curve of $Al_2O_3$ irradiated with ${\gamma}$-ray shows that the 380 K and 475 K TL peaks completely disappear while the 415 K TL peak still exists. The electron beam induced TL glow curve of $Al_2O_3$ after $Li^{+}$ ion implantation shows that the TL peak at 440 K is enhanced by a factor of 2 over the TL intensity of unimplanted $Al_2O_3$ while the TL peak at 380 K evidently disappears The implanted $Li^{+}$ ions are assumed to form singly charged interstitial cations and then recombine with electron trapped in F centers to produce F+ centers. The 380 K and 475 K TL peaks are proposed to be associated with F center, while the 415 K and 440 K TL peak are connected with F$^{+}$ center.

  • PDF

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

Basic study on proliferation control of cancer cells using combined ultrasound and LED therapeutic module (초음파와 LED를 이용한 일체형암세포 증식억제 모듈의 기초연구)

  • Cho, Kyung-rae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2018
  • Ultrasonography and photodynamic therapy have been proposed as useful tools as a treatment for inducing necrosis of cells using reactive oxygen species. Apoptosis is an internal mechanism necessary for cells regardless of damage. Ultrasound has the effect of inducing the apoptosis of these cells, and the frequency of 1 MHz is the most applicable area for medical use. The laser which is generally used in photodynamic therapy has a heat reaction and the treatment is limited. However, as a small light emitting diode is developed, it shows possibility to minimize the equipment and reduce heat reaction. On the other hand, there are relatively few researches on direct effects of light compared with studies using photosensitizers, and the area is also limited. Therefore, in this paper, we have developed a cancer cell proliferation control module using ultrasonic and light emitting diodes, which have relatively few side effects, and quantitatively analyze the effect of the module to propose an optimal suppression technique.

Oprical Properties of $\alpha$-Sulfur Single Crystal ($\alpha$-sulfur 단결정의 광학적 특성에 관한 연구)

  • 송호준;김화택;이정순
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.442-446
    • /
    • 1998
  • $\alpha$--sulfur single crystal which has orthorohmbic structure was grown using Bridgman method. The indirect optical energy band gap of this crystal are 2.65 and 2.82 eV at 10 and 300K, respectively. The wavelengths of photoluminecence(PL) peaks are 543 and 596 nm at 10k, By thermally stimulated current (TSC) method, two electron traps($D_1,D_2$) located at 0/23 and 0.43eV below the conduction band and a hole trap(A) located at 0.31 eV above the valence band are observed. PL mechanism of $\alpha$-sulfur single crystal is analyzed using the values of optical energy band gap at 10k two electron traps and a hole trap.

  • PDF

Development of OSL Dosimetry Reader (선량 판독용 OSL 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Design and performance test results of a newly developed optically stimulated luminescence (OSL) measurement system are presented in this paper. Generally, different types of optical filters are used in OSL reader system to minimize the interference of the stimulation light in the OSL signal. For optically stimulation of $Al_2O_3:C$, we have arrived at an optimal combination of the filters, i.e., GG420 filter for filtering the stimulating light source, and a combined UG11 and BG39 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optically stimulation. By using various control boards, the OSL reader device was successfully interfaced with a personal computer. A software was developed to deliver required commands to operate the OSL reader by using the LabView program (National Instruments, Inc.). In order to evaluate the reliability and the reproducibility of newly designed-OSL reader. Performance testing of the OSL reader was carried out for OSL efficiency, OSL decay curve and signal to noise ratio of the standard $Al_2O_3:C$ OSL material. It was found to be comparable with that of commercial Riso reader system.