DOI QR코드

DOI QR Code

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System

열자극발광 및 광자극발광 측정장치의 개발

  • Park, Chang-Young (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Chung, Ki-Soo (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Duk (College of Interdisciplinary & Creative Studies, Konyang University) ;
  • Chang, In-Su (Korea Atomic Energy Research Institute) ;
  • Lee, Jungil (Korea Atomic Energy Research Institute) ;
  • Kim, Jang-Lyul (Korea Atomic Energy Research Institute)
  • 박창영 (경상대학교 물리학과 및 기초과학연구소) ;
  • 정기수 (경상대학교 물리학과 및 기초과학연구소) ;
  • 이종덕 (건양대학교 창의융합대학) ;
  • 장인수 (한국원자력연구원) ;
  • 이정일 (한국원자력연구원) ;
  • 김장렬 (한국원자력연구원)
  • Received : 2015.01.05
  • Accepted : 2015.02.09
  • Published : 2015.03.31

Abstract

The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.

열이나 빛의 자극에 의한 물질의 발광현상, 즉 열자극발광(thermoluminescence, TL)과 광자극발광(optically stimulated luminescence, OSL)의 메커니즘을 규명하고, 이 현상을 방사선량의 측정에 활용할 수 있는 새로운 발광물질을 개발하는데 활용할 수 있는 측정장치를 개발하였다. 이는 열자극과 광자극을 동시에 가할 수 있는 장치로서, 열자극에 필요한 온도제어를 위하여 35 kHz의 정현파 전원으로 변환하여 스트립 형태의 발열부에 걸어주게 되며, 최대 $20K{\cdot}s^{-1}$의 온도상승률로 약 1K의 정밀도로 온도를 제어할 수 있었다. 광자극을 위한 광원으로 중심파장이 470 nm인 Luxeon V형 고휘도 LED 등 여러 파장영역의 LED나 레이저를 사용할 수 있도록 하였다. 대표적으로 470 nm의 LED로 $Al_2O_3$:C의 OSL을 측정하는 경우, 시료의 발광에서 자극광을 분리시키기 위하여 LED의 자극광은 단파장차단필터인 GG420을 통과시켜서 시료에 걸리게 하고, 시료의 발광은 대역통과필터인 UG11를 통과하여 광증배관에 걸리게 하였다. 아울러 시료에 따라 LED나 필터들을 다르게 조합할 수 있도록 하여 시료의 발광특성에 맞는 최적의 측정을 수행할 수 있다. PC로 측정장치의 전체적인 제어가 이루어지며 LabView로 개발한 제어프로그램은 그래픽사용자환경(GUI)으로 되어 있다. 이 연구를 통해서 개발한 장치로 LiF:Mg,Cu,Si와 $Al_2O_3$:C를 표준시료로 하여 TL과 OSL을 측정하였고, 이들의 발광특성이 기존에 알려진 특성을 재현하여 이 장치가 신뢰할 수 있는 성능을 내는 것을 확인할 수 있었다.

Keywords

References

  1. Daniels F, Saunders DF. Science. 1950;111: 461-469.
  2. Yukihara EG, McKeever SWS. Optically Stimulated Luminescence : Fundamentals and Applications. Wiley. 2011.
  3. Chen R, Pagonis V. Thermally and Optically Stimulated Luminescence. Wiley. 2011.
  4. McKeever SWS. Thermoluminescence of Solids. Cambridge University Press. Cambridge. 1985.
  5. Daniels F, Boyd CA, Saunders DF. Science. 1953;117:343-349. https://doi.org/10.1126/science.117.3040.343
  6. Chen R, Kirsh Y. Analysis of Thermally Stimulated processes. Pergamon Press. New York. 1981.
  7. Huntley DJ, Godfrey-Smith DI, Thewalt MLW. Optical dating of sediments. Nature. 1985;313:105-107. https://doi.org/10.1038/313105a0
  8. Bulur E, Goksu HY, Wahl W. Infrared (IR) stimulated luminescence from ${\alpha}-Al_2O_3$:C. Radiat Meas. 1998;29(6):625-638. https://doi.org/10.1016/S1350-4487(98)00076-6
  9. Galloway RB. On the stimulation of luminescence with green light emitting diodes. Radiat Meas. 1994;23;547-550. https://doi.org/10.1016/1350-4487(94)90097-3
  10. Botter-Jensen L. Luminescence techniques : instrumentation and methods. Radiat Meas. 1997;27:749-768. https://doi.org/10.1016/S1350-4487(97)00206-0
  11. Botter-Jensen L, Mejdahl V, Murray AS. New light on OSL. Quat Geochronol. 1999;18:303-309.
  12. Botter-Jensen L, Bulur E, Duller GAT, Murray AS. Advances in luminescence instrument systems. Radiat Meas. 2000;32:523-528. https://doi.org/10.1016/S1350-4487(00)00039-1
  13. Park CY, Chung KS, Lee JD, Chang IS, Lee JI, Kim JL. Development of OSL dosimetry reader. J Radiat Prot. 2012;37(1):10-15. https://doi.org/10.14407/jrp.2012.37.1.010
  14. Park CY. Development of a Multifunction System for Optically Stimulated Luminescence and Thermoluminescence Measurements. Ph. D. Dissertation. Gyeongsang National University. 2012;8.
  15. Chung KS, Choe HS, Lee JI, Kim JL. An algorithm for the deconvolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps. Radiat Meas. 2011;46:1598-1601. https://doi.org/10.1016/j.radmeas.2011.05.071
  16. Lee JI, Kim JL. Yang JS, Pradhan AS, Kim BH, Chung KS, Choe HS. Dual-step annealing for the stability of glow curve structure and the TL sensitivity of the newly developed LiF:Mg,Cu,Si. Radiat Meas. 2007;42(4/5):597-600. https://doi.org/10.1016/j.radmeas.2007.01.080
  17. Pradhan AS, Lee JI, Kim JL, Chung KS, Choe HS, Lim KS. TL glow curve shape and response of LiF:Mg,Cu,Si-Effect of heating rate. Radiat Meas. 2008;43: 361-364. https://doi.org/10.1016/j.radmeas.2007.10.016
  18. Chung KS, Lee JI, Kim JL. A computer program for the deconvolution of the thermoluminescence glow curves by employing the interactive trap model, Radiat Meas. 2012;47;766-769. https://doi.org/10.1016/j.radmeas.2012.03.026
  19. Chung KS, Park CY, Lee JI, Kim JL. Development of a new curve deconvolution algorithm for optically stimulated luminescence. Radiat Meas. 2010;45:320-322. https://doi.org/10.1016/j.radmeas.2009.12.042
  20. Chang IS, Lee JI, Kim JL. ANALYSIS OF THE LiF:Mg,Cu,Si TL AND THE LiF:Mg,Cu,P TL GLOW CURVES BY USING GENERAL APPROXIMATION PLUS MODEL. J Radiat Prot. 2009;34(4):155-164.
  21. Horowitz, YS, Yossian, D, Computerised glow curve deconvolution: application to thermoluminescence dosimetry, Radiat Prot Dosim. 1995;60:1-110.

Cited by

  1. An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements vol.43, pp.4, 2015, https://doi.org/10.14407/jrpr.2018.43.4.160