• Title/Summary/Keyword: 광저장

Search Result 663, Processing Time 0.02 seconds

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

Influence of Increased Carbon Dioxide Concentration on the Bioluminescence and Cell Density of Marine Bacteria Vibrio fischeri (이산화탄소 농도 증가에 따른 발광미생물의 상대발광량과 밀도변화에 대한 연구)

  • Sung, Chan-Gyoung;Moom, Seong-Dae;Kim, Hye-Jin;Choi, Tae-Seob;Lee, Kyu-Tae;Lee, Jung-Suk;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • An experiment was conducted to evaluate the biologically adverse effect of increased carbon dioxide in seawater on marine bacteria, Vibrio fischeri. We measured the bioluminescence and cell density at every 6 hours for 24 hours of the whole incubation period after exposing test microbes to a range of $CO_2$ concentration such as 380(Control), 1,000, 3,000, 10,000 and 30,000 ppm, respectively. Significant effect on relative luminescence(RLU) of V. fischeri was observed in treatments with $CO_2$ concentration higher than 3,000 ppm at t=12 h. However, the difference of RLU among treatments significantly decreased with the incubation time until t=24 h. Similar trend was observed for the variation of cell density, which was measured as optical density using spectrophotometer. The results showed that a significant relationship between $CO_2$ concentration and bioluminescence of test microbes was observed for the mean time. However, the inhibition of relative bioluminescence and also cell density could be recovered at the concentration levels higher than 3,000 ppm. The dissolved $CO_2$ can be absorbed directly by cell and it can decrease the intracellular pH. Our results implied that microbes might be adversely affected at the initial growing phase by increased $CO_2$. However, they could adapt by increasing ion transport including bicarbonate and then could make their pH back to normal level. Results of this study could be supported to understand the possible influence on marine bacteria by atmospheric increase of $CO_2$ in near future and also by released $CO_2$ during the marine $CO_2$ sequestration activity.