• Title/Summary/Keyword: 광섬유 지연선로

Search Result 23, Processing Time 0.03 seconds

Optical True Time-Delay for Planar Phased Array Antennas Composed of a FBG Prism and a Fiber Delay Lines Matrix (FBG 프리즘과 광섬유 지연선로 행렬을 이용한 평면 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 2006
  • In this paper, we proposed an optical true time-delay (TTD) for planar phased array antennas (PAAs), which is composed of a wavelength-dependent optical true time delay (WDOTTD) followed by a wavelength-independent optical true time delay (WIOTTD). The WDOTTD is a fiber Bragg gratings (FBGs) Prism and the WDOTTD is a fiber delay-lines matrix of which each component consists of a certain length of fiber connected to cross-ports of a 2${\times}$2 MEMS switch. A 10-GHz 2-bit${\times}$4-bit two-dimensional optical TTD has been fabricated by cascading a WDOTTD with a maximum time delay of 810 ps to a WIOTTD of $\pm$50 ps. Time delay and insertion loss for each radiation angle have been measured. Time delay error for the WIOTTD has been measured to be less than $\pm$1 ps. We have also designed a two-dimensional 10-GHz PAA composed of 8${\times}$8 microstrip patch antenna elements driven by the proposed TTD. The radiation patterns of this PAA have been obtained by simulation and analyzed.

Optical Fiber Delay-Line Filter with Recirculation Loop Structure Using a Fiber Grating (광섬유 격자를 이용한 재순환 광섬유 지연선로 필터)

  • 김성철;권서원;이상배;권상삼;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.80-87
    • /
    • 1999
  • We propose a new recirculating fiber delay-line filter structure. In proposed system, we insert a fiber Bragg grating(FBG) into a recirculating fiber delay line and it operates as a partially reflection mirror. Therefore, the transfer function of the system is given by the recirculating delay output part and the multiple-reflected output part due to a FBG. By adjusting the parameters such as coupling coefficient, reflectivity of FBG, and gain, we can make the system operate in various filter.

  • PDF

Optical True Time-Delay Composed of Fiber Brags Gratings and Metal Film-Coated Fibers (광섬유 브래그 격자와 금속 박막이 단면에 증착된 광섬유로 구성된 광 실시간 지연선로)

  • 배덕희;신종덕;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.433-439
    • /
    • 2003
  • In this paper, we proposed a novel true time-delay (TTD) feeder for phased array antennas (PAAs) using fiber Bragg gratings (FBGs) and fibers coated with Cr/Au film. This structure requires less number of FBGs than the previously proposed FBG TTD feeders since one FBG is replaced with a metal film reflector in a strand of optical delay line connected to each antenna element and also provides the flexible wavelength selection since the metal film shows wide reflectance spectrum. A TTD for 10 GHz linear PAAs capable of steering beams in three different directions at 0$^{\circ}$and $\pm$30$^{\circ}$has been built. Experimental results on time delays are in good agreement with those calculated at all the steering angles. A 10 GHz linear array antenna with eight antenna elements red from the proposed TTD has been designed and the far-field radiation pattern or this antenna has been obtained by simulation.

WDM Optical True Time-Delay for X-Band Phased Array Antennas (X-밴드 위상 배열 안테나를 위한 WDM 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.162-166
    • /
    • 2007
  • In this paper, we propose a WDM optical true time-delay (OTTD) beam former for phased way antenna (PAA) systems. It is composed of a delay lines matrix and a multiwavelength source with discrete DFB laser diodes. The building block of a delay lines matrix is a $2\times2$ optical MEMS switch with proper fiber-optic delay line connected between cross ports. A $4\times3$ matrix using four DFB lasers has been fabricated with unit time-delay difference of 12 ps. Maximum time-delay error was measured to be -1.74 ps and +1.14 ps at a radiation angle of $46.05^{\circ}$, corresponding to error range of $-2.87^{\circ}\sim+1.88^{\circ}$. By measuring time-delays at six different RF frequencies from 5- to 10-GHz, we verified the true time-delay characteristic of our OTTD.

Optical Pulse Compression at $1.319{\mu}m$ Through Fiber-grating Pair (광섬유와 회절격자를 이용한 $1.319{\mu}m$ 파장 광펄스의 압축)

  • 이재승;박희갑;심창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 1991
  • Utilizing self-phase modulation effects of a dispersion-shifted fiber and delayline characteristics of two gratings, mode-locked 80 ps pulses at 1.319 $\mu \textrm m$ wavelength from a Nd:YAG laser are compressed to 2.1 ps. This experiment is suitable for studying the transmission characteristics of high energy short pulses along normal fibers in zero dispersion regime.

  • PDF

Optical true time-delays for phased-array antennas using 2×2 MEMS switches and fiber delay lin (2×2 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 실시간 지연선로)

  • Lee, Gab-Yong;Choi, Yeon-Bong;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.289-294
    • /
    • 2002
  • We propose optical true time-delays (TTDs) for phased-array antennas (PAAs) composed of 2${\times}$2 MEMS switches and fiber delay lines, and implement a TTD which shows a maximum scan angle of $120^{o}$ with $30^{o}$ resolution. Since this structure uses only one fixed wavelength laser diode, it provides several advantages such as easy control, high speed operation, and low cost compared with those of the optical TTDs using tunable laser sources. We design a four element linear PAA using the proposed TTDs at 10 ㎓. Simulation results show that the maximum gain is 11.6 dB at the radiation angle $0^{o}$, 11.2 dB at $\pm$$30^{o}$, and 10.6 dB at $\pm$$60^{o}$.

Microwave Photonic Filter Using Optical True-Time-Delay Line Matrix (광 실시간 지연선로 행렬을 이용하는 마이크로웨이브 포토닉 필터)

  • Jung, Byung-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 2015
  • Microwave Photonic(MWP) filters capable of use a bandpass filter or a notch filter with large bandwidth have been proposed. 4-lines${\times}$2-bit fiber-optic delay lines with a unit time-delay difference of 50 ps were experimentally realized. By changing the time-delay difference and the coefficients of microwave-modulated optical signals, the bandpass and notch filters were implemented and characterized.

Single-mode fiber depolarizer for WDM optical communications (WDM 광통신 시스템을 위한 단일모드 광섬유 무편광기)

  • 이동렬;전상민;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.224-229
    • /
    • 2003
  • We realized a depolarizer based on two 2$\times$2 directional couplers and single mode optical fiber. A reduction method for the degree of polarization is demonstrated by using computer simulation, which is verified experimentally. The degree of polarization is -20 dB for the polarized input beam of spectral width less than 0.05 nm. The experimental results verify that the polarization noise, which is due to the change of the input polarization state, can be reduced by making the fiber-ring delay-line length greater thanthecoherencelengthofthesource.

A 4-bit optical true time-delay for phased array antennas using 2×2 optical MEMS switches and fiber-optic delay lines (2×2 광 MEMS 스위치와 광섬유 지연선로를 이용한 위상배열 안테나용 4-비트 광 실시간 지연선로)

  • 정병민;윤영민;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.385-390
    • /
    • 2004
  • In this paper, we designed a 4-bit optical true time-delay(TTD) for phased array antennas(PAAs), which is composed of a wavelength-fixed optical source, 2 ${\times}$ 2 optical MEMS switches, and fiber-optic delay lines. A 4-bit TTD with a unit time delay difference of 6 ps for 10-GHz PAAs has been implemented. Measurement results on time delay show an error of -0.4 ps at maximum, corresponding to a radiation angle error of less than 1.63$^{\circ}$. Thus, the TTD implemented in this research performs in excellent agreement with theory. Each TTD line, composed of MEMS switches and fiber-optic delay lines, connected to the corresponding antenna element has insertion loss in between 1.36 ㏈ and 2.40 ㏈ depending upon the setup of the switches. On the other hand, the insertion loss difference between TTD lines was 0.32 ㏈ at maximum for a fixed radiation angle. The TTD structure proposed in this paper might be more reliable and economical than those previously proposed using tunable wavelength sources if proper power equalization either with gain control of RF amplifiers or variable attenuators is achieved.

An Optical True Time-Delay for Two-Dimensional X-Band Phased Array Antennas (2차원 X-밴드 위상 배열 안테나용 광 실시간 지연선로)

  • Jung, Byung-Min;Kim, Sung-Chul;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.287-294
    • /
    • 2005
  • In this paper, an optical true time-delay (TTD) for two-dimensional (2-D) phased array antennas (PAAs), composed of a multi-wavelength optical source and a fiber optic delay line matrix consisting of $2\times2$ optical switches with optical fiber connected between cross ports, has been proposed. A 2-bit $\times4-bit$ optical TTD for 10-GHz 2-D PAAs has been implemented by cascading a wavelength dependent TTD (WD-TTD) and a wavelength independent TTD (WI-TTD). The unit time delay for WD-TTD and WI-TTD have been chosen as ${\Delta}T=12ps$ and $\Delta\tau=6ps$, respectively. Time delay have been measured at all radiation angles. The maximum delay error for WD-TTD was measured to be 3 ps due to jitter incurred from gain switching. For the case of WI-TTD, error was within ${\pm}\;1\;ps$. The proposed optical TTD for a 2-D PAA has the following advantages: 1) higher gain compared to one-dimensional linear PAAs, 2) stabilization of optical power and wavelength by using a multi-wavelength optical source, and 3) fast beam scan and simple operation due to electronic control of the $2\times2$ optical switches matrix on a column-by-column basis.