• Title/Summary/Keyword: 광대역 SHA

Search Result 4, Processing Time 0.018 seconds

Investigating the Properties of the Light Bulb Source in Shallow-Water Environments (천해 환경에서의 전구 음원의 음향학적 특성 연구)

  • Oh Taekhwan;Na Jungyul;Lee Seongwook;Kim Seongil;Park Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.303-308
    • /
    • 2005
  • In this paper, the acoustic properties of the light bulb are presented based on a new light bulb source system of continuously transmitting implosive signal . We describe the results of analysis of bulb signals and comparison with Previous works. The results show that Peak-source-level and Primary resonant frequency are increasing with increasing source depth. This bulb source can be used for the purpose of geoacoustic parameter inversion and source tracking in sha]low water via matched field processing.

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

An 8b 220 MS/s 0.25 um CMOS Pipeline ADC with On-Chip RC-Filter Based Voltage References (온-칩 RC 필터 기반의 기준전압을 사용하는 8b 220 MS/s 0.25 um CMOS 파이프라인 A/D 변환기)

  • 이명진;배현희;배우진;조영재;이승훈;김영록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.69-75
    • /
    • 2004
  • This work proposes an 8b 220 MS/s 230 mW 3-stage pipeline CMOS ADC with on-chip filers for temperature- and power- insensitive voltage references. The proposed RC low-pass filters improve switching noise performance and reduce reference settling time at heavy R & C loads without conventional off-chip large bypass capacitors. The prototype ABC fabricated in a 0.25 um CMOS occupies the active die area of 2.25 $\textrm{mm}^2$ and shows the measured DNL and INL of maximum 0.43 LSB and 0.82 LSB, respectively. The ADC maintains the SNDR of 43 dB and 41 dB up to the 110 MHz input at 200 MS/s and 220 MS/s, respectively, while the SNDR at the 500 MHz input is degraded as much as only 3 dB than the SNDR at the 110 MHz input.

A 14b 100MS/s $3.4mm^2$ 145mW 0.18um CMOS Pipeline A/D Converter (14b 100MS/s $3.4mm^2$ 145mW 0.18un CMOS 파이프라인 A/D 변환기)

  • Kim Young-Ju;Park Yong-Hyun;Yoo Si-Wook;Kim Yong-Woo;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.54-63
    • /
    • 2006
  • This work proposes a 14b 100MS/s 0.18um CMOS ADC with optimized resolution, conversion speed, die area, and power dissipation to obtain the performance required in the fourth-generation mobile communication systems. The 3-stage pipeline ADC, whose optimized architecture is analyzed and verified with behavioral model simulations, employs a wide-band low-noise SHA to achieve a 14b level ENOB at the Nyquist input frequency, 3-D fully symmetric layout techniques to minimize capacitor mismatch in two MDACs, and a back-end 6b flash ADC based on open-loop offset sampling and interpolation to obtain 6b accuracy and small chip area at 100MS/s. The prototype ADC implemented in a 0.18um CMOS process shows the measured DNL and INL of maximum 1.03LSB and 5.47LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 59dB and 72dB, respectively, and a power consumption of 145mW at 100MS/s and 1.8V. The occupied active die area is $3.4mm^2$.