• Title/Summary/Keyword: 광대역통신

Search Result 1,387, Processing Time 0.029 seconds

Digital predistorters for communication systems with dynamic spectrum allocation (가변 스펙트럼 할당을 지원하는 광대역 전력 증폭기를 위한 디지털 전치왜곡기)

  • Choi, Sung-Ho;Seo, Sung-Won;Mah, Bak-Il;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.307-314
    • /
    • 2011
  • A new predistortion technique for dynamic spectrum allocation systems such as cognitive radio (CR) is proposed. The system model considered in this paper occupies a small band at a time, but the center frequency can be changed in the wide range of frequency. In this scenario. the front-end filter may not eliminate the harmonics of the power amplifier (PA) output. The proposed PD reduces the spectral regrowth of the fundamental signal at the carrier frequency (${\omega}_0$) and removes the harmonics ($2{\omega}_0$, $3{\omega}_0$, ...) at the same time. The proposed PD structure is composed of multiple predistorters (PDs) centered at integer multiples of ${\omega}_0$. The PD at ${\omega}_0$ is for removing spectral regrowth of the fundamental signal, and the others are for harmonic reduction. In the proposed PD structure, parameters of PDs are found jointly. Simulation results show that the spectral regrowth can be reduced by 20dB, and the 2nd and 3rd harmonics can be reduced down to -70dB from the power of the fundamental signal.

A Low Power Single-End IR-UWB CMOS Receiver for 3~5 GHz Band Application (3~5 GHz 광대역 저전력 Single-Ended IR-UWB CMOS 수신기)

  • Ha, Min-Cheol;Park, Byung-Jun;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.657-663
    • /
    • 2009
  • A fully integrated single ended IR-UWB receiver is implemented using 0.18 ${\mu}m$ CMOS technology. The UWB receiver adopts the non-coherent architecture, which simplifies the RF architecture and reduces power consumption. The receiver consists of single-ended 2-stage LNAs, S2D, envelope detector, VGA, and comparator. The measured results show that sensitivity is -80.8 dBm at 1 Mbps and BER of $10^{-3}$. The receiver uses no external balun and the chip size is only $1.8{\times}0.9$ mm. The consumed current is very low with 13 mA at 1.8 V supply and the energy per bit performance is 23.4 nJ/bit.

Multiple Antenna System for Next Generation Mobile Communication (차세대 이동 통신용 다중 안테나 시스템)

  • Han, Min-Seok;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2010
  • In this paper, a multiple antenna system for next generation mobile applications is proposed. The proposed MIMO antenna consists of two parallel folded monopole antennas with the length of 100 mm and spacing of 6 mm and a decoupling network which locates at the top side of a mobile handset. In order to improve the isolation characteristic at the LTE band 13, a decoupling network was added between the two antenna elements placed close to each other. The decoupling network, consisting of two transmission lines, a shunt reactive component and common ground line, is simple and compact. To obtain the wide bandwidth characteristic, an wide folded patch structure generating the strong coupling between feeding and shorting lines through the slit is used at the bottom side of a mobile handset. Also, the performance of a multiple antenna system composed of three antenna elements is analyzed.

Policy Agendas for the Efficient Use of Public and Broadcast Spectrum (공공 및 방송주파수의 효율적 이용을 위한 정책 과제)

  • Yeon, Kwon-Hum;Kim, Yongkyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.8
    • /
    • pp.849-859
    • /
    • 2013
  • This paper explores the policy alternatives to promote efficient use of spectrums for public use and terrestrial broadcasting, which are essential to provide spectrum for mobile broadband services. To this end, recent overseas spectrum management policies are introduced and utilized to provide domestic policy alternatives. For the efficient use of spectrum for public use, policy alternatives such as detailed survey of current usage of spectrum for public use, levying the opportunity cost, installment of spectrum efficiency fund, providing incentives for the efficient use of spectrum for military use, and introduction of shared use are proposed. For the efficient use of spectrum for terrestrial broadcasting, short-term policy alternative such as change of contribution rate base of the broadcasting - telecommunications development fund is proposed. For long-term policy alternatives, change of spectrum provision from designation to allocation for the spectrum for commercial terrestrial broadcasting and introduction of administered incentive pricing to public terrestrial broadcasting are proposed.

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.

Handover Scheme Considering Moving Velocity and Traffic Characteristics in IMT-2000 Networks (IMT-2000망에서 이동체의 속도와 트래픽 특성을 고려한 핸드오버 기법)

  • Han, Jeong-An;Park, Sang-Jun;Jo, Jae-Jun;Kim, Byeong-Gi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.12
    • /
    • pp.1504-1515
    • /
    • 1999
  • 무선 이동 통신망은 기존의 음성위주로 제공되던 단일 미디어 서비스의 제공으로부터 발전되어 2000년대 초까지 이동 사용자에게 고품질의 멀티미디어 데이타 서비스를 제공하고, 장소에 제한을 받지 않고 서비스를 제공받을 수 있도록 하는 IMT-2000을 실현을 목표로 발전하고 있다. 또한 다수의 서비스 사용자와 광대역의 데이타를 전송하기 위해서 셀의 반경은 점차로 축소되고 있다. 이에 따라서, 사용자의 위치등록과 핸드오버와 같은 처리에 대한 부하가 커지게 되었다. 그러므로 무선 이동통신에서 서비스 이용자에게 일정 수준 이상의 QoS를 보장해 주기 위해서 효율적인 핸드오버 알고리즘의 도입은 매우 중요한 문제가 되고 있다. 본 논문에서는 IMT-2000환경에서 보다 효율적인 QoS를 서비스 사용자에게 제공해 줄 수 있도록 하기 위해 다양한 이동체의 속도와 멀티미디어 트래픽 특성을 동시에 고려하여 신뢰성 있는 핸드오버를 제공하는 H-PS(Hybrid-Priority Scheme)알고리즘을 제안하고 시뮬레이션을 통해 성능을 분석한다.Abstract Wireless mobile communications is developed from the only single voice traffic sevice to multimedia sevices. And mobile communications will evolve IMT-2000, which is provide users with high quality multimedia services. A radius of cell is gradually reduced to accept many service users and transport the multimedia traffics. Therefore, a overhead of location tracking and handover processing are increased. Then to guarantee high QoS to service users in wireless mobile communications, efficient handover algorithm is very important issue.In this study, we propose a H-PS(Hybrid-Priority Scheme) handover scheme considering mobility and traffic characteristics in IMT-2000 networks. And performance evaluate using simulation.

Analysis of Interference Effect of ESIM on FS System Considering the Antenna Pointing Error (안테나 포인팅 에러를 고려한 ESIM이 FS 시스템에 미치는 간섭 영향 분석)

  • Kang, Young-Houng;Oh, Dae-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.503-510
    • /
    • 2016
  • In recent years, owing to the growing user demand for the two-way internet service based on the move global broadband communications, a new type of satellite terminal has developed, known as earth station in motion (ESIM). This service was required by Resolution 158 (WRC-15) to study on the coexistence with the co-primary fixed service (FS) in 27.5-29.5 GHz as a FSS uplink. In this paper, four scenarios was introduced to account for the antenna pointing error and the azimuth for an analysis on the sharing between ESIM and FS. From analysis results, the required separation distance between two systems should be about 32~52 km according to the elevation angles of $20^{\circ}{\sim}40^{\circ}$ using thresholds of 5% and 10% outage probability. Therefore, it is necessary to control the azimuth angle due to a moving terminal as well as the pointing error of ESIM to minimize the required separation distance and to protect the co-primary FS.

Stacked Microstrip Antenna Design for PCS Base Station (개인휴대통신 기지국용 적층된 마이크로스트립 안테나 설계)

  • Park, Jong-Sung;Jeon, Joo-Seong;Kim, Hyung-Bum;Kim, Dong-Won;Jin, Sung-Woo;Lee, Jin;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 2000
  • In this paper, the design for a PCS base station antenna which is using broadband method by a stacked structure has been studied. The sensitive parameters, such as the parasitic elements, the height of air layer between the upper and lower patch, and the variation of feed point, of the microstrip antenna that has stacked structure in a characteristics variation situation are classified and the characteristics has been investigated through the simulations. A designed antenna has following characters. Impedance bandwidth is Z57.5MHz(VSWR${\leq}$2), horizontal beamwidth is $64.1^{\circ}$, and gain is 14.7dBi. Therefore, it is confirmed the characteristics is good. In this paper, through the designing of a stacked microstrip antenna, we has investigated the availability for Korea PCS base station antenna.

  • PDF

A Study On The Wireless ATM MAC Protocol Using Mini-slot With Dynamic Bandwidth Allocation Algorithm (동적 대역 할당 알고리즘을 이용한 미니슬롯 기반의 무선 ATM 매체 접속 제어 프로토콜에 관한 연구)

  • Jeong, Geon-Jin;Lee, Seong-Chang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.17-23
    • /
    • 2000
  • Wireless link has high bit error rate compared with wired link and many users share this limited bandwidth. So it needs more powerful error control code and efficient media access control(MAC) to provide multimedia service reliably. In this paper we proposed efficient MAC frame format based on TDMA using mini-slot for request access. The number of mini-slots is variable based on the result of collision in the previous frame. This dynamic allocation of request mini-slots helps resolve the contention situation quickly and avoids the waste of bandwidth that may occur when there are several unneeded request mini-slots. The simulation results are also presented in terms of channel utilization, call blocking probability and cell transmission delay for mixed traffic environment.

  • PDF

Implementation of RF Frequency Synthesizer for IEEE 802.15.4g SUN System (IEEE 802.15.4g SUN 시스템용 RF 주파수 합성기의 구현)

  • Kim, Dong-Shik;Yoon, Won-Sang;Chai, Sang-Hoon;Kang, Ho-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.57-63
    • /
    • 2016
  • This paper describes implementation of the RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the IEEE802.15.4g SUN sensor node transceiver modules. Design of the each module like VCO, prescaler, 1/N divider, ${\Delta}-{\Sigma}$ modulator, and common circuits of the PLL has been optimized to obtain high speed and low noise performance. Especially, the VCO has been designed with NP core structure and 13 steps cap-bank to get high speed, low noise, and wide band tuning range. The output frequencies of the implemented synthesizer is 1483MHz~2017MHz, the phase noise of the synthesizer is -98.63dBc/Hz at 100KHz offset and -122.05dBc/Hz at 1MHz offset.