• Title/Summary/Keyword: 관측지점

Search Result 1,808, Processing Time 0.03 seconds

Development of a Decision Making Model for Efficient Rehabilitation of Sewer System (효율적인 하수관거 개량을 위한 의사결정모형의 개발)

  • Lee, Jung-Ho;Jun, Hwan-Don;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.127-135
    • /
    • 2008
  • The objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I) and insufficient carrying capacity (ICC). Such rehabilitation efforts, however, have not been particularly successful due to a lack of sewer data and unsystematic field practices. The present study aimed to solve these problems by developing a decision making model consisting of two models: the rehabilitation weighting model (RWM) and the rehabilitation priority model (RPM). In RWM, the I/I of each pipe in a drainage district is estimated according to various defects, with each defect given an individual weighting factor using an analytic hierarchy process (AHP). RPM determines the optimal rehabilitation priority (ORP) using a genetic algorithm (GA). The developed models can be used to overcome the problems associated with unsystematic practices and, in practice, as a decision making tool for urban sewer system rehabilitation.

Analyses of Correlation Between Groundwater Movement and Tidal Effect in West Costal Landfill Area (서해안 매립지 내 지하수유동과 조석에 관한 상관성 분석)

  • Park Jong-Oh;Song Moo-Yaung;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.293-300
    • /
    • 2006
  • The groundwater movement in the west costal landfill area was analyzed by measuring N value by Standard Penetration Test, coefficient of permeability by falling head method, linear structure analysis by Digital Elevation Method, groundwater flow direction and rate by flowmeter logging due to tidal variation in the each borehole. The coefficients of permeability of the weathered zone and of the marine deposit showed similar values although some values of weathered zone show smaller values than those of the marine deposit. The major groundwater flow and rate in the marine deposit observed as east-west direction due to tidal variation, but on the other hand it was observed as N45E in weathered zone which is the major direction of the linear structures in the area. 2 hours delayed changes of the groundwater flow direction was observed during the 24 hours observation, and it seems to be a travel time of the tidal wave which cause the continuous change of the hydaulic gradient of the groundwater.

Water Quality Elements Extraction of Lake by the Landsat TM Images (Landsat TM 영상에 의한 호수의 수질인자 추출)

  • 최승필;양인태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 1998
  • It is necessary to check the water quality of the lake on a continuous basis to determine the appearance of water pollution; however, it not only takes much time and expenses but it is considerably difficult to investigate the wide range of the area. If we use the remote sensing technique through the use of satellites, the status of water quality can be checked covering many wide areas simultaneously; and because the same area can be measured on a periodic basis, it is extremely effective in investigating the water quality. Furthermore, as some of the Landsat sensors carry characteristics which sense objects according to wave length, the distribution of water quality can be checked relatively accurately within a short period of time, while its image can be displayed in color. Hence, this research has attempted to extract water quality elements, such as transparency, water depth, and surface water temperature by utilizing the satellite data, and has prepared the water quality distribution image map of the Lake Hwajinpo by presenting the related empirical formula of the water quality elements. If the water quality distribution image map is prepared after extracting the water quality elements from the DN of the Landsat TM image and then carrying out TIN analysis through the use of GIS, relatively more accurate pattern can be learned covering a wide rage of area than the pattern presented based on the value obtained from actual observation.

  • PDF

Estimation of Spatial Coherency Functions for Kriging of Spatial Data (공간데이터 크리깅 적용을 위한 공간상관함수 추정)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.91-98
    • /
    • 2016
  • In order to apply Kriging methods for geostatistics of spatial data, an estimation of spatial coherency functions is required priorly based on the spatial distance between measurement points. In the study, the typical coherency functions, such as semi-variogram, homeogram, and covariance function, were estimated using the national geoid model. The test area consisting of 2°×2° and the Unified Control Points (UCPs) within the area were chosen as sampling measurements of the geoid. Based on the distance between the control points, a total of 100 sampling points were grouped into distinct pairs and assigned into a bin. Empirical values, which were calculated with each of the spatial coherency functions, resulted out as a wave model of a semi-variogram for the best quality of fit. Both of homeogram and covariance functions were better fitted into the exponential model. In the future, the methods of various Kriging and the functions of estimated spatial coherency need to be studied to verify the prediction accuracy and to calculate the Mean Squared Prediction Error (MSPE).

Prediction of Tidal Changes and Contaminant Transport Due to the Development of Incheon Coastal Zone (인천해역 개발에 따른 조석변화 및 오염물질 운송 예측)

  • Jeong, Shin-Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A horizontal 2-D model which includes the wetting-drying treatment technique in the intertidal zone is established for the prediction of tidal changes and contaminant transport due to the development of Incheon coastal zone. The flow model is verified by the measurement data at Jeong-Do, and then the computed values are closely matched to the observed water elevations and velocities of main-flow direction. And then, the tidal change patterns are simulated using this model before and after the construction of the Youngjongdo New Airport and Shihwa Seadike. In the spring tide condition, pollutants transport pattern is also simulated for the arbitrary pollutants loads. By the analysis of this numerical simulation results, the velocities after development are decreased, and discharged pollutants are mainly transported by the advection along a narrow deep trough. Thus, this model can be used as the compatible prediction model for the tidal change and pollutant transport due to the development plan of Incheon coastal zone.

  • PDF

Wind Effect on Tidal Currents in the Neighborhood of Haeundae Beach (해운대 해수욕장 전면 해상의 조류에 미치는 바람효과)

  • Lee, Moon-Ock;Lee, Jong-Sup;Kim, Byeong-Kuk;Kim, Jong-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.34-46
    • /
    • 2010
  • We observed tidal currents throughout all four seasons in 2007 at a single station, located 1.6km off Haeundae Beach and compared these current data with wind data. The direction of seasonal wind represented a similarity between the winds at sea and on land but the speed of wind at sea was almost three times stronger than the wind on land. In addition, the wind at sea turned out to considerably affect on tidal currents, particularly from late summer to autumn. On the other hand, the thickness of Ekman Layer, indicating a limitation of wind influence, was estimated to be 31.8 m on average, suggesting that the entire water column is under the influence of wind. Therefore, we are required to consider the wind stress into the analysis of tidal currents for the prevention of the loss of sand from Haeundae Beach.

The Distribution of Heat Waves and 10 Cause in South Korea (한국의 열파 분포와 그 원인에 관한 연구)

  • Kim, Ji-Youn;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.332-343
    • /
    • 2007
  • This study aims to examine the distribution of heat waves and to understand its cause for 33 years$(1973\sim2005)$ from 60 weather stations in Korea. Heat wave is defined as a period of 3 or more days with a daily maximum temperature exceeds the 95th percentile. In the inland of Chungcheong region, the Chungcheong western costal region, the inland of Jeolla region, the inland of Gyeongsang region and the southern region of Jeju island, heat wave days appeared more than 160 days. In the middle region of eastern costal and the northern region of Jeju island, heat wave days were less than 110 days. In regions that were heavily influenced by southwesterly winds during the occurrence of heat waves, such as the inland of Chungcheong region, the Chungcheong western costal region, the inland of Jeolla region and the inland of Gyeongsang region, heat waves continued for the longer term.

A Study on Spatial and Temporal Distribution Characteristics of Coastal Water Quality Using GIS (GIS를 이용한 연안수질의 시공간적 분포 특성에 대한 연구)

  • Cho, Hong-Lae;Jeoung, Jong-Chul
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.223-234
    • /
    • 2006
  • In order to examine spatio-temporal characteristics of coastal water quality, we applied GIS spatial analysis to the water quality data collected from observation points located on Korean coastal area during 1997$\sim$2004. The water quality parameters measured included: chlorophyll-a, pH, DO, COD, SS, dissolved inorganic nitrogen, dissolved inorganic phosphorous, salinity, temperature. The water quality data used in this paper was obtained only at selected sites even though they are potentially available at any location in a continuous surface. Thus, it is necessary to estimate the values at unsampled locations so as to analyze spatial distribution patterns of coastal water quality, Owing to this reason, we applied IDW(inverse distance weighted) interpolation method to water quality data and evaluated the usefulness of IDW method. After IDW interfolation method was applied, we divided the Korean coastal area into 46 sections and examined spatio-temporal patterns of each section using GIS visualization technique. As a result of evaluation, we can blow that IDW interpolation and GIS are useful for understanding spatial and temporal distribution characteristics of coastal water quality data which is collected from a wide area far many years.

  • PDF

Moored measurement of the ambient noise and analysis with environmental factors in the coastal sea of Jeju Island (제주 연해 수중 주변소음 계류 측정과 환경 변화에 따른 분석)

  • Jeong, Inyong;Min, Soohong;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.390-399
    • /
    • 2020
  • Underwater ambient noise was measured at the eastern and western costal sites of Jeju Island where the water depth was 20 m by a hydrophone moored at mid-depth (10 m) for 4 months. These eastern and western sites were selected as potential sites for offshore wind power generator and the current wave energy generator, respectively. Ambient noise was affected by environmental data such as wind and wave, which were collected from nearby weather stations and an observation station. Below 100 Hz, ambient noise was changed about 5 dB ~ 20 dB due to low and high tide. Below 1 kHz, wave and wind effects were the main source for ambient noise, varying up to 25 dB. Ambient noise was strongly influenced by wave at lower frequency and by wind at higher frequency up to over 1 kHz. The higher frequency range over 10 kHz was influenced by rainfall and biological sources, and the spectrum was measured about 10 dB higher than the peak spectrum level from Wenz curve at this frequency range.

Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis (바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정)

  • Lee, Ahreum;Jeong, Su-Jong;Park, Chan-Ryul;Park, Hoonyoung;Yoon, Jongmin;Son, Junghoon;Bae, Yeon
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.