• Title/Summary/Keyword: 관측망

Search Result 935, Processing Time 0.03 seconds

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling (강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발)

  • Hwang, Yeon-Sang;Jung, Young-Hun;Lim, Kwang-Suop;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1083-1091
    • /
    • 2010
  • Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.

Underwater Telemetering by Ultrasonic Multi-Beam Transducer (Multi-Beam 초음파진동자의 수중원격제어에 관한 연구)

  • Choe, Han-Gyu;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This paper described on the availability fo the underwater telemetering by the ulterasonic multi-beam system made as a trial to expand detectable range of the fish school. The ultrasonic multi-beam system consisted of four transducers which reconstructed with the existing net recorder. The experiment for the telemetering carried out in the set net fishing ground. The results obtained are summerized as follows: 1. The detectable distance of a target by the linear arrangement of four transducers increased according to the sea depth and the interval between transducers. 2. When the fish school in the entrance of set net was measured by linear arrangement of transducers it was entered in depth of 2.5~3.5m at near position of leader, and in depth of 3.5~4.5m at near position of door net. 3. The deviations of error between the actual position and the position by transducer in case of the target depth 1m, 1.5m, 2m were 5.9~27.1cm, 3.2~28.9cm, 3.5~25.8cm respectively, and 68.3% probability radius of them were 14.6cm, 17.7cm, 17.0cm respectively. 4. When the fish school in the fish court of set net was measured by plane arrangement of transducer it was entered toward the opposite direction of tide current. 5. The available distance of telemetering by the multi-beam transducer was 1.8km and the telemetering was possible to control everywhere in case of sea depth more than three meters.

  • PDF

RF ENVIRONMENT TEST ON A PROPOSED SITE FOR THE SENSOR STATION OF THE NEXT GENERATION SATELLITE NAVIGATION SYSTEM, GALILEO: II. THE RESULT OF THE TEST ON THE CANDIDATE SITE IN THE YEAR OF 2007 BY KASI AND ESA (차세대 위성항법체계 갈릴레오 센서스테이션 유치 후보지 전파 수신환경 조사: II. 실제 예정 부지에 대한 2007년 한국천문연구원과 ESA 공동조사 결과)

  • Jo, Jung-Hyun;Comte, Michel;Gonzalez, Moises;Park, Jong-Uk;Lee, Chang-Hoon;Park, Phil-Ho;Hwang, Jung-Wook;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • A RF environmental field test for the proposed Galileo Sensor Station site was done by Alcatel Alenia technical team contracted by European Space Agency (ESA) and the Space Geodesy division of Korea Astronomy and Space Science Institute at the Korean VLBI Hetwork (KVN) site in Tamla University Campus, Jeju from June 21, 2007 to June 24, 2007. Full band and in-band 24 hour observation for radio frequency interference, precise positioning, and multipath on three proposed antenna locations for Galileo signal were executed. The main purpose of this survey is to verify the results of previous test on 2006 by KASI. The preliminary analysis of the results and a full investigation also had been done by ESA under the permission of KASI until the end of July, 2007.

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area (산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가)

  • Yoon, Seongsim;Son, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

Building of Prediction Model of Wind Power Generationusing Power Ramp Rate (Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축)

  • Hwang, Mi-Yeong;Kim, Sung-Ho;Yun, Un-Il;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.211-218
    • /
    • 2012
  • Fossil fuel is used all over the world and it produces greenhouse gases due to fossil fuel use. Therefore, it cause global warming and is serious environmental pollution. In order to decrease the environmental pollution, we should use renewable energy which is clean energy. Among several renewable energy, wind energy is the most promising one. Wind power generation is does not produce environmental pollution and could not be exhausted. However, due to wind power generation has irregular power output, it is important to predict generated electrical energy accurately for smoothing wind energy supply. There, we consider use ramp characteristic to forecast accurate wind power output. The ramp increase and decrease rapidly wind power generation during in a short time. Therefore, it can cause problem of unbalanced power supply and demand and get damaged wind turbine. In this paper, we make prediction models using power ramp rate as well as wind speed and wind direction to increase prediction accuracy. Prediction model construction algorithm used multilayer neural network. We built four prediction models with PRR, wind speed, and wind direction and then evaluated performance of prediction models. The predicted values, which is prediction model with all of attribute, is nearly to the observed values. Therefore, if we use PRR attribute, we can increase prediction accuracy of wind power generation.

Study on the Use of Bracketed Summations of the Peak Ground-motion Acceleration Per Second for Rapid Earthquake Alert Notifications (신속 지진피해통보를 위한 지반가속도의 초당 최대값 구간적산 방법의 활용에 관한 연구)

  • Yun, Kwan-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • In an effort to further exploit the peak ground-motion acceleration (PGA) information per second available in real time by the enacted law, bracketed summations of the PGA per second ($BSPGA_k$) for 30 seconds based on the records with a rate of 100 samples were compared with the cumulative absolute velocity (CAV) and earthquake intensities based on a worldwide database of records from small-to-large earthquakes. The CAV, currently in use as an earthquake damage indicator for nuclear power plants due to its strong correlation with the earthquake intensity, has the disadvantage of requiring a massive amount of digital data with a rate of more than 100 samples per second. The comparative study shows that the $BSPGA_k$ is well correlated with the CAV over the wide range of strong ground-motion levels, which suggests that the $BSPGA_k$ is one of the new promising ground-motion parameters especially useful for rapid earthquake alert notifications through an earthquake monitoring network. Based on the domestic database of records from small-to-moderate earthquakes with felt reports, it is also observed that the $BSPGA_k$ is comparable to the CAV and better than the PGA in predicting the intensity by using the correlation relation.

Source Characteristics of the Recent Earthquakes for Seven Years in the Southwestern Region of the Korean Peninsula (최근 7년간 한반도 남서부 지역에서 발생한 지진의 진원 특성)

  • Jung, Mi Kyeong;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Focal mechanism solutions in the southwestern region of the Korean Peninsula ($34^{\circ}N-36^{\circ}N$, $126^{\circ}E-128^{\circ}E$) were obtained from the analysis of the recent 22 earthquakes ($M{\geq}2.0$) occurred from January, 2005 to March, 2011. The spatial differences between the epicenters recalculated by this study and those by KMA (Korea Meteorological Administration) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are less than $0.05^{\circ}$, indicating a small deviation. However, they become a little bit larger in the coastal area due to a biased arrangement of seismic stations. Redetermined depths of hypocenters show a difference less than 12.7 km by comparison with the depth data announced by KIGAM. Most epicenters in inland area are located closely to the lineaments. Fault plane solutions were obtained from the analysis of P and SH wave polarities, and SH/P amplitude ratios. They show strike-slip faulting or strike-slip faulting with reverse components dominantly. The P-axes trends are mainly ENE-WSW or E-W directions. The direction of fault plane and auxiliary plane with 'NNE-SSW and WNW-ESE' or 'NE-SW and NW-SE' are dominant and almost parallel to the general trends of lineaments in the study area.

Spatio-Temporal Variability of Temperature and Precipitation in Seoul

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Kim, So-Ra;Kwak, Han-Bin
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.467-478
    • /
    • 2008
  • This study analyzes the spatial and temporal variability of temperature ($^{\circ}C$) and precipitation (mm) in Seoul, Korea. The temperature and precipitation data were measured at 31 automatic weather stations (AWSs) in Seoul for 10 years from 1997 to 2006. In this study, inverse distance squared weighting (IDSW) was applied to interpolate the non-measured spaces. To estimate the temperature and precipitation variability, the mean values and frequencies of hot and cold days were examined. The maximum and minimum temperatures were $32.80^{\circ}C$ in 1999 and $-19.94^{\circ}C$ in 2001, respectively. The year 2006 showed the highest frequency of hot temperatures with 79 hot days, closely followed by 2004 and 2005. The coldest year was in 2001 with 105 cold days. The annual mean temperature and precipitation increased by about $1^{\circ}C$ and 483mm during the 10-year period, respectively. The temperature variability differed between high-elevation forested areas and low-elevation residential areas. However, the precipitation variability showed little relation with the topography and land use patterns.

  • PDF

A Historical Review on the Introduction of Chugugi and the Rainfall Observation Network during the Joseon Dynasty (조선시대 측우기 등장과 강우량 관측망에 대한 역사적 고찰)

  • Cho, Ha-man;Kim, Sang-Won;Chun, Young-sin;Park, Hye-Yeong;Kang, Woo-Jeong
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.719-734
    • /
    • 2015
  • Korea is one of the country with the world's oldest meteorological observation records. Starting with first meteorological record of fog in Goguryeo in the year of 34 BC, Korea had left a great deal of quantitative observation records, from the Three Kingdoms Period to Goryeo to Joseon. During the Joseon Dynasty, with a great attention by kings, efforts were particularly made to measure rainfall in a systematic and scientific manner. In the 23rd year of King Sejong (1441), the world's first rain gauge called "Chugugi" was invented; in the following year (1442), a nationwide rainfall observation network was established. The King Sejong distributed Chugugi to 350 observation stations throughout the state, even to small towns and villages, for measuring and recording rainfall. The rainfall observation using Chugugi, initiated by King Sejong, had been in place for about 150 years, but halted during national disturbances such as Japanese invasion of Korea in 1592. Since then, the observation had been forgotten for a long time until the rainfall observation by Chugugi was resumed in the 48th year of King Yeongjo (1770). King Yeongjo adopted most of the existing observation system established by King Sejong, including the size of Chugugi and observation rules. He, however, significantly reduced the number of Chugugi observation stations to 14, and commanded the 352 local authorities such as Bu, Gun, Hyeon to conduct "Wootaek", a method of measuring how far the moisture had absorbed into the soil when it rains. Later on, six more Chugugi stations were established. If the number of stations of Chugugi and Wootaek are combined together, the total number of rainfall observation station in the late period of Joseon Dynasty was 372. The rainfall observation with Chugugi during the Joseon Dynasty is of significance and excellence in three aspects: 1) the standard size of Chugugi was so scientifically designed that it is as great as today's modern rain gauge; 2) rainfall was precisely measured, even with unit of Bun (2 mm); and 3) the observation network was distributed on a nationwide basis.