• 제목/요약/키워드: 과학 기사

검색결과 272건 처리시간 0.038초

융복합기술로서 GMO에 관한 보도경향연구: 1994~2015년까지 국내 주요일간지 기사분석을 중심으로 (Study of Trend of Reporting on GMO as a Convergence Technology: Focused on analyzing Articles in Major Domestic Daily Newspapers from 1994 to 2015)

  • 조항민
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.267-281
    • /
    • 2016
  • 본 연구는 과학기술 위험이슈로서 GMO에 대한 보도경향을 확인하기 위해 조선일보, 한겨레를 대상으로 1994~2015년까지 GMO 관련 기사를 내용 분석하였다. 분석 결과, 'GMO 기술 도입기(1994-2000)', 'GMO 기술 발전기(2001-2010)', 'GMO 사회 수용기(2011-2015)'의 세 시기별로 '위험', '불안/염려'라는 주제가 지속적으로 중요주제로 취급되고 있었고, 심층성이나 취재기자 전문성에서는 모든 시기에서 부족함이 드러났다. 이념적 지향점이 다른 언론 간 비교에서는 조선일보가 한겨레에 비해 보도주제, 논조 등에서 GMO에 대한 신(親)기술적 성향이 강한 것으로 확인되었다. 또한, 보도논조에 따른 '위험-편익'주제와의 관계를 확인한 결과, 부정적 논조의 보도들은 GMO의 위험-편익에 있어서 '위험'을 긍정적 논조의 보도들은 GMO의 위험-편익에 있어서 '편익'을 중요하게 다루고 있었다. 본 연구를 통해 과학기술 위험논쟁의 대중인식에 있어 바로미터가 되는 국내 과학저널리즘의 주제편향성, 비전문성 등의 문제점 개선을 제언할 수 있겠다.

COVID-19 '덕분에 챌린지' 전후 간호사 관련 뉴스 기사의 토픽 모델링 및 키워드 네트워크 분석 (Topic Modeling and Keyword Network Analysis of News Articles Related to Nurses before and after "the Thanks to You Challenge" during the COVID-19 Pandemic)

  • 윤은경;김정옥;변혜민;이국근
    • 대한간호학회지
    • /
    • 제51권4호
    • /
    • pp.442-453
    • /
    • 2021
  • Purpose: This study was conducted to assess public awareness and policy challenges faced by practicing nurses. Methods: After collecting nurse-related news articles published before and after 'the Thanks to You Challenge' campaign (between December 31, 2019, and July 15, 2020), keywords were extracted via preprocessing. A three-step method keyword analysis, latent Dirichlet allocation topic modeling, and keyword network analysis was used to examine the text and the structure of the selected news articles. Results: Top 30 keywords with similar occurrences were collected before and after the campaign. The five dominant topics before the campaign were: pandemic, infection of medical staff, local transmission, medical resources, and return of overseas Koreans. After the campaign, the topics 'infection of medical staff' and 'return of overseas Koreans' disappeared, but 'the Thanks to You Challenge' emerged as a dominant topic. A keyword network analysis revealed that the word of nurse was linked with keywords like thanks and campaign, through the word of sacrifice. These words formed interrelated domains of 'the Thanks to You Challenge' topic. Conclusion: The findings of this study can provide useful information for understanding various issues and social perspectives on COVID-19 nursing. The major themes of news reports lagged behind the real problems faced by nurses in COVID-19 crisis. While the press tends to focus on heroism and whole society, issues and policies mutually beneficial to public and nursing need to be further explored and enhanced by nurses.

태권도 뉴스기사의 연도별 주제어 비교분석: 토픽모델링 적용 (Comparative Analysis of the Keywords in Taekwondo News Articles by Year: Applying Topic Modeling Method)

  • 전민수;임효성
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.575-583
    • /
    • 2021
  • 이 연구는 토픽모델링을 적용하여 뉴스기사에 따른 태권도 동향을 연도별로 분석하는 것에 목적이 있다. 언론보도를 통한 태권도 동향을 살펴보기 위해 한국언론재단의 빅카인즈를 통해 뉴스기사와 태권도 전문 언론에 대한 기사를 수집하였다. 검색기간은 2000년 이전, 2001년~2010년, 2011년~2020년 3개의 구간으로 구분하여 검색하여 총 12,124개를 연구자료로 선정하였다. 토픽분석을 위해 전처리 과정을 거쳤으며, LDA 알고리즘을 활용하여 토픽분석을 수행하였다. 이때 모든분석은 python 3을 적용하였다. 그 결과 첫째, 연도별에 따른 언론기사 주제를 분석한 결과 2000년이전 1위는 '세계'. 2위는 '남북', 3위는 '올림픽'으로 나타났으며, 2001년~2010년 1위는 '세계', 2위는 '협회', 3위는 '세계태권도연맹'으로 조사되었다. 2011년~2020년 1위는 '세계', 2위는 '시범', 3위는 '국기원'으로 나타났다. 둘째, 2000년이전 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 2가지로 구분되었다. 구체적으로 Topic 1은 '남·북 체육교류', Topic 2는 '올림픽 시범종목 채택'으로 선정되었다. 셋째, 2001년~2010년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '태권도 시범공연 및 비리', Topic 2는 '무주태권도공원 조성', Topic 3은 '세계태권도축제'로 선정되었다. 넷째, 2011년~2020년 뉴스기사를 토픽모델링으로 분석한 결과 토픽은 3가지로 선정되었다. Topic 1은 '2018 평창동계올림픽 성공 개최', Topic 2는 '남북 태권도 합동시범공연 ', Topic 3은 '2017 무주세계태권도선수권대회'로 선정되었다.

텍스트 마이닝을 활용한 노인장기요양보험에서의 작업치료: 2007-2018년 (Occupational Therapy in Long-Term Care Insurance For the Elderly Using Text Mining)

  • 조민석;백순형;박엄지;박수희
    • 고령자・치매작업치료학회지
    • /
    • 제12권2호
    • /
    • pp.67-74
    • /
    • 2018
  • 목적 본 연구의 목적은 텍스트 마이닝이라는 빅데이터 분석 기법 중 하나를 활용하여 노인장기요양보험에서 작업치료의 역할을 정량적으로 분석하는 것이다. 연구방법 신문기사 분석을 위해 2007~208년까지 기간 설정 후 "노인장기요양보험+작업치료"를 주제어로 수집하였다. Textom이라는 웹 크롤링(Web Crawling)을 활용해 국내 검색엔진 네이버에서 <네이버뉴스>의 데이터베이스를 활용하였다. 수집결과 노인장기요양보험+작업치료 검색에서 510편의 뉴스 데이터의 기사제목과 원문을 수집한 후 연도별 기사 빈도, 핵심어분석을 시행하였다. 연구결과 연도별 기사 발행 빈도를 살펴보면 2015년과 2017년 발행한 기사 수가 70편(13.7%)으로 가장 많았고, 핵심어 분석 상위 10개의 용어는 '치매'(344)가 가장 많았으며, 작업과 핵심어의 관례를 알아보면, 치매, 치료, 병원, 건강, 서비스, 재활, 시설, 제도, 등급, 어르신, 전문, 급여, 공단, 국민이 관련이 있는 것으로 나타났다. 결론 본 연구에서는 텍스트 마이닝 기법을 통해 11년간의 노인장기요양보험의 언론 보도 동향을 토대로 관련 핵심 키워드에서 치매와 재활에 대해 사회적 요구와 작업치료사의 역할을 보다 객관적으로 확인하였다는 점에서 의의가 있다. 이 결과를 바탕으로 다음 연구에서는 연도에 따른 다양한 분석방법을 통해 연구방법론을 보완하여야 할 것이다.

과학-기술-사회 관련성에 대한 이해 촉진을 위한 초등 과학 모듈의 개발 및 적용: 신문기사 활용수업에 대한 학생들의 인식과 흥미 조사 (The Development and Use of Science Modules for Facilitating Students' Understanding of Science-Technology-Society: Students' Perception and Interest of News Article-Based Lessons)

  • 서지혜;이용복;장신호
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제27권1호
    • /
    • pp.83-92
    • /
    • 2008
  • In this study, we developed elementary science education modules for facilitating students' understanding of the connected nature of Science-Technology-Society. For these modules, we particularly used news articles to make connections among science, technology, and society. We set up the development criteria as followings: connecting science-technology-society, aligning with national science curriculum, respecting students' interest, and appropriating the difficulty levels in terms and concepts. We also studied 4th grade students' perception of using these modules in science lessons. Most students perceived that using the modules in their science classes helped them link science-technology-society intimately and enhance their interest and motivation, as well as their self-esteem for studying science.

  • PDF

몬테카를로 시뮬레이션, 알파고 제로, 베이즈 정리를 이용한 최적의 항만 화물차 입항 스케줄링 시스템에 대한 연구 (Research on optimal port cargo vehicle arrival scheduling system using Monte Carlo simulation, AlphaGo Zero, and Bayes' theorem)

  • 김민경;박수아;이해영;김나영;유상오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1096-1097
    • /
    • 2023
  • 본 연구에서는 항만 교통 혼잡 문제를 해결하기 위해 최적화와 관련된 요소와 트럭 운전기사와 터미널 사이의 협상과 관련된 요소를 새로운 방식으로 고려한 중장기 및 실시간 스케줄링 모델을 제시한다. 중장기 스케줄링 모델은 몬테카를로 시뮬레이션, 실시간 스케줄링 모델은 알파고 제로의 원리와 베이즈 정리를 이용하여 구현했다. 실험 결과 제시된 알파고 제로를 이용한 실시간 스케줄링 시스템이 화물차 평균 지연시간을 30분에서 4분으로 대폭 줄여 지연 시간을 최소화하는 것을 입증했다. 실험 관련 코드는 다음 주소에서 확인할 수 있다 : https://github.com/yulleta/Application_of_AlphaGo-Zero_to_port_arrival_scheduling

MPEG-7을 기반으로 한 뉴스 동영상 스키마 및 샷 종류별 키프레임을 이용한 요약 생성 방법 (A Scheme for News Videos based on MPEG-7 and Its Summarization Mechanism by using the Key-Frames of Selected Shot Types)

  • 정진국;심진선;낭종호;김경수;하명환;정병희
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권5호
    • /
    • pp.530-539
    • /
    • 2002
  • 최근 정형화된 구조를 갖는 뉴스 동영상 비디오에 대한 아카이브 시스템을 구축하기 위한 많은 연구가 진행되어 왔다. 그러나 기존의 시스템에서는 기사에 대한 메타 데이타를 저장하는 방법이 서로 다르기 때문에 이런 데이타 사이의 호환성이 없다는 문제점을 가지고 있다. 본 논문에서는 이런 문제점을 해결하기 위하여 멀티미디어 내용 정보를 표현하기 위한 표준인 MPEC-7 MDS에 바탕을 둔 뉴스 동영상 스키마를 제안하였으며, 또한 기사를 이루는 각 샷들의 특징을 반영한 기사 요약 방법을 설계하고 구현하였다. 본 논문에서 제안한 뉴스 동영상을 위한 스키마는 뉴스 구조의 특성을 반영하여 MPEG-7 MDS의 VideoSegment, TextAnnotation 등과 같은 스키마를 이용하여 설계하였고, 요약 방법에서는 요약 비디오 데이타의 크기를 줄이기 위하여 샷들의 키프레임들만을 해당 오디오와 함께 상영하는 슬라이스 쇼 방법을 사용하였다.

도서관에 대한 언론 보도 경향: 1990~2018 뉴스 빅데이터 분석 (An Analysis of News Trends for Libraries in Korea: Based on 1990~2018 News Big Data)

  • 한승희
    • 정보관리학회지
    • /
    • 제36권3호
    • /
    • pp.7-36
    • /
    • 2019
  • 이 연구에서는 1990년부터 2018년까지 29년간의 도서관을 주제로 한 뉴스 기사 37,818 건을 대상으로 양적 분석과 내용분석을 통해 도서관에 대한 언론 보도 경향을 분석하였다. 이를 위해 먼저, 시기별, 주제별, 언론사 유형별 기준에 따라 언론 보도의 양적 변화 추이를 분석한 후, 키워드 빈도 분석과 언어 네트워크 분석을 통해 시기별 보도 내용의 변화 추이와 기사에 내재된 언론 프레임을 분석하였다. 분석 결과, 언론은 도서관의 정보제공 기능과 교육적 기능, 그리고 문화적 기능에 주된 관심을 보였으며, 언론의 관심 주제 변화 추이는 사서직 처우 문제를 제외하고는 대체적으로 도서관계 이슈의 변화 추이와 일치하는 것으로 나타났다. 마지막으로, 언론이 도서관 기사 보도에 대해 취하는 주된 태도는 보도기능과 광고기능인 것으로 나타났다.