• Title/Summary/Keyword: 과학기술 데이터

Search Result 2,591, Processing Time 0.032 seconds

Korean Image Caption Generator Based on Show, Attend and Tell Model (Show, Attend and Tell 모델을 이용한 한국어 캡션 생성)

  • Kim, Dasol;Lee, Gyemin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.258-261
    • /
    • 2022
  • 최근 딥러닝 기술이 발전하면서 이미지를 설명하는 캡션을 생성하는 모델 또한 발전하였다. 하지만 기존 이미지 캡션 모델은 대다수 영어로 구현되어있어 영어로 캡션을 생성하게 된다. 따라서 한국어 캡션을 생성하기 위해서는 영어 이미지 캡션 결과를 한국어로 번역하는 과정이 필요하다는 문제가 있다. 이에 본 연구에서는 기존의 이미지 캡션 모델을 이용하여 한국어 캡션을 직접 생성하는 모델을 만들고자 한다. 이를 위해 이미지 캡션 모델 중 잘 알려진 Show, Attend and Tell 모델을 이용하였다. 학습에는 MS-COCO 데이터의 한국어 캡션 데이터셋을 이용하였다. 한국어 형태소 분석기를 이용하여 토큰을 만들고 캡션 모델을 재학습하여 한국어 캡션을 생성할 수 있었다. 만들어진 한국어 이미지 캡션 모델은 BLEU 스코어를 사용하여 평가하였다. 이때 BLEU 스코어를 사용하여 생성된 한국어 캡션과 영어 캡션의 성능을 평가함에 있어서 언어의 차이에 인한 결과 차이가 발생할 수 있으므로, 영어 이미지 캡션 생성 모델의 출력을 한국어로 번역하여 같은 언어로 모델을 평가한 후 최종 성능을 비교하였다. 평가 결과 한국어 이미지 캡션 생성 모델이 영어 이미지 캡션 생성 모델을 한국어로 번역한 결과보다 좋은 BLEU 스코어를 갖는 것을 확인할 수 있었다.

  • PDF

A Study on the Advancement of the Government's Digital Employment Service (정부의 디지털 고용서비스 고도화에 관한 연구)

  • Woo Young Lee;Jae Kap Lee;Yeongdon Na
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.233-241
    • /
    • 2023
  • This study analyzes the construction status of digital employment services in Korea and presents the direction of continuous advancement and development of digital employment services based on overseas cases and the latest digital technology development trends. Find out the specific digitalization promotion strategies and current status of major countries such as Belgium, Australia, the United Kingdom, Germany, France, and the United States. In addition, in order to present a plan for the development of digital employment services in Korea, we will propose a plan to expand digital employment services to online employment centers through individual and customized employment services, data openness, and expansion of public-private collaboration through digital employment services using AI and big data.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Trend Analysis of Information & Communication Technology (감성 정보통신 기술 동향 분석)

  • Choi, Kyung-Mi;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1495-1496
    • /
    • 2011
  • 최근, 현대인들은 뛰어난 성능과 품질을 넘어서 자신의 감성을 만족시켜주는 제품, 서비스를 원하고 있다. 감성 Information & Communication Technology(ICT)는 정보 통신 기술을 기반으로 인간의 감성을 자동 인지하고 사용자의 감성과 상황정보를 처리하여 상황에 맞게 적용하는 기술을 말한다. 즉, 인간의 감성을 센싱해 이를 데이터화하고 다양한 IT 기기에 활용하는 것을 말한다. 미래에 다가올 감성 ICT 기술은 단순히 사용자의 감성을 자극하는 정도를 뛰어넘어 사용자와 기기가 서로 교감하는 형태로 나아갈 것이다. 본 논문에서는 감성 ICT 의 기술 동향을 분석하고 향후 방향성을 모색 하고자 한다.

A Study on Reinforcement Learning Agent Technology for Autonomous Ships (자율운항선박을 위한 강화학습 에이전트 기술 연구)

  • Yu-Chan Oh;So-Hee Yang;Jae-Hoon Lee;Yun-Ju Hwang;Ku-Yeong Lee
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.997-998
    • /
    • 2024
  • 기존 자율운항선박 연구에는 전통적인 AI 기술들이 사용되어 왔다. 그러나 이러한 기술들은 특정 조건에 맞춘 규칙과 추론 방식으로 작동하기 때문에, 다양한 변수가 있는 환경에서 최적의 성능을 발휘하기는 어렵다. 이에 본 연구는 자율운항선박에서 가장 중요한 경로최적화와 충돌회피 과제 해결에 강화학습이 효과적인 실험을 통해 입증하고 최적의 강화학습 알고리즘을 제시한다.

Priority for the Investment of Artificial Rainfall Fusion Technology (인공강우 융합기술 개발을 위한 R&D 투자 우선순위 도출)

  • Lim, Jong Yeon;Kim, KwangHoon;Won, DongKyu;Yeo, Woon-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.261-274
    • /
    • 2019
  • This paper aims to develop an appropriate methodology for establishing an investment strategy for 'demonstration of artificial rainfall technology using UAV' and that include establishment of a technology classification, set of indicators for technology evaluation, suggestion of final key technology as a whole study area. It is designed to complement the latest research trend analysis results and expert committee opinions using quantitative analysis. The key indicators for technology evaluation consisted of three major items (activity, technology, marketability) and 10 detailed indicators. The AHP questionnaire was conducted to analyze the importance of indicators. As a result, it was analyzed that the attribute of the technology itself is most important, and the order of closeness to the implementation of the core function (centrality), feasibility (feasibility). Among the 16 technology groups, top investment priority groups were analyzed as ground seeding, artificial rainfall verification, spreading and diffusion of seeding material, artificial rainfall numerical modeling, and UAV sensor technology.

Prediction of Food Franchise Success and Failure Based on Machine Learning (머신러닝 기반 외식업 프랜차이즈 가맹점 성패 예측)

  • Ahn, Yelyn;Ryu, Sungmin;Lee, Hyunhee;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2022
  • In the restaurant industry, start-ups are active due to high demand from consumers and low entry barriers. However, the restaurant industry has a high closure rate, and in the case of franchises, there is a large deviation in sales within the same brand. Thus, research is needed to prevent the closure of food franchises. Therefore, this study examines the factors affecting franchise sales and uses machine learning techniques to predict the success and failure of franchises. Various factors that affect franchise sales are extracted by using Point of Sale (PoS) data of food franchise and public data in Gangnam-gu, Seoul. And for more valid variable selection, multicollinearity is removed by using Variance Inflation Factor (VIF). Finally, classification models are used to predict the success and failure of food franchise stores. Through this method, we propose success and failure prediction model for food franchise stores with the accuracy of 0.92.

A GAN-based face rotation technique using 3D face model for game characters (3D 얼굴 모델 기반의 GAN을 이용한 게임 캐릭터 회전 기법)

  • Kim, Handong;Han, Jongdae;Yang, Heekyung;Min, Kyungha
    • Journal of Korea Game Society
    • /
    • v.21 no.3
    • /
    • pp.13-24
    • /
    • 2021
  • This paper shows the face rotation applicable to game character facial illustration. Existing studies limited data to human face data, required a large amount of data, and the synthesized results were not good. In this paper, the following method was introduced to solve the existing problems of existing studies. First, a 3D model with features of the input image was rotated and then rendered as a 2D image to construct a data set. Second, by designing GAN that can learn features of various poses from the data built through the 3D model, the input image can be synthesized at a desired pose. This paper presents the results of synthesizing the game character face illustration. From the synthesized result, it can be confirmed that the proposed method works well.

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

Data Sampling Using Oversampling Technique for Estimating Two-Dimensional Dispersion Coefficients (2차원 분산계수 경험식 산정을 위한 오버샘플링 기법 활용 데이터 샘플링)

  • Lee, Sun Mi;Park, In Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.449-449
    • /
    • 2021
  • 하천 내 오염물질 유입원은 하수처리장과 같이 농도를 예측 가능한 점오염원이 일반적이지만, 수질오염사고와 같이 다량의 유해물질이 일시에 하천에 유입되는 경우도 발생하곤 한다. 특히 오염물질 유입지점과 취수장이 인접한 경우, 오염물질 혼합해석에 대한 이해가 오염사고 대응 및 수질 관리 측면에서 매우 중요하다. 자연하천에서는 사행에 따른 유속 구조의 불균일성 등으로 인하여 오염물질의 이송 및 분산 과정은 매우 복잡하게 나타난다. 이러한 하천의 지형적, 수리학적 특성이 오염물질의 혼합 거동에 미치는 영향을 정확하게 모의하기 위해서는 3차원 수치모형을 적용해야 한다. 그러나 대부분의 하천은 하폭 대 수심비가 매우 크기 때문에 2차원 이송-분산 방정식을 지배방정식으로 채택하는 2차원 수치 모형이 널리 사용되어왔다. 2차원 이송-분산 방정식의 해석결과는 입력된 종, 횡 분산계수의 값에 따라 변화하기 때문에 정확한 혼합해석을 위해 분산계수의 결정이 매우 중요하다. 과거 연구에서는 횡 분산계수의 결정을 위해 기본 수리량을 이용한 경험식을 활용하여 계산한 바 있다. 종 분산계수의 경우에는 경험식의 산정에 필요한 충분한 실험 자료가 축적되어 있지 않아 이상적 흐름 상태를 가정하여 유도된 Elder의 이론식(Elder, 1959)을 사용해왔다. 하지만 많은 연구에서 이러한 Elder의 이론식이 종 분산계수를 과소산정 할 우려가 있다고 제시했다. 따라서 하천의 전단류 분산특성을 나타낼 수 있는 데이터 확보를 통해 종 분산계수의 경험식 산정 및 횡 분산계수의 정확도 향상이 필요한 상황이다. 본 연구에서는 기존 선행 연구에서 수행된 2차원 추적자실험 데이터의 확장을 위해 오버샘플링 기법을 적용하였으며, 이를 통한 머신러닝을 통한 분산계수 산정 가능성을 분석하고자 한다. 부족한 추적자 실험 데이터를 확장하기 위해 오버샘플링 기법 중 SMOTE 기법을 활용했다. 오버샘플링 기법을 이용하여 생산된 데이터의 신뢰성을 검증하였으며, 추후 머신러닝을 이용한 2차원 종, 횡 분산계수 산정에 대한 활용 가능성을 분석했다.

  • PDF