Kim, Seongchan;Song, Sa-Kwang;Cho, Minhee;Shin, Su-Hyun
The Journal of the Korea Contents Association
/
v.21
no.2
/
pp.121-129
/
2021
In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks.
Park, Seung-Kyun;Youn, Chan-Hyun;Suk, Tae-Kyung;Kim, Kyong-Hwan
Annual Conference of KIPS
/
2010.11a
/
pp.1743-1745
/
2010
클라우드 컴퓨팅 환경을 기반으로 하는 비즈니스 생명주기는 직접적인 어플리케이션이나 서비스의 구현을 포함해서, 기획, H/W나 S/W 프로비저닝, 운용 및 관리, 평가와 같은 과정을 요구한다. 이 모든 과정은 다양한 형태의 비즈니스 자산들을 필요로 하면서, 또 다른 새로운 자산들을 만들어낸다. 반복되는 비즈니스 생명주기에서 생성된 비즈니스 자산의 재사용성을 극대화할 수 있다면, 신속하고 효과적인 클라우드 기반의 비즈니스를 추구할 수 있는데, 이러한 과정의 중심에는 효과적인 레포지토리의 구축이 우선된다. 이에 본 논문은 클라우드기반 비즈니스 시스템의 특징을 살펴보고, 비즈니스 생명주기의 각 단계에서 요구되는 레포지토리의 요구사항을 분석하여 적합한 메타데이터 및 데이터 아키텍처를 설계하고 제안하고자 한다. 또한, 오픈소스 시스템을 통해 제안하는 시스템의 활용가능성을 확인하고자 한다.
The projects of citizen science which is originated from citizen data collecting action driven by governmental institutes and science associations have been implemented with different form of collaboration with scientists. The themes of citizen science has extended from the ecology to astronomy, distributed computing, and particle physics. Citizen science could contribute to the advancement of science through cost-effective science research based on citizen volunteer data collecting. In addition, citizen science enhance the public understanding of science by increasing knowledge of citizen participants. The community-led citizen science projects could raise public awareness of environmental problems and promote the participation in environmental problem-solving. Citizen science projects based on local tacit knowledge can be of benefit to the local environmental policy decision making and implementation of policy. These social values of citizen science make many countries develop promoting policies of citizen science. The korean government also has introduced some citizen science projects. However there are some obstacles, such as low participation of citizen and scientists in projects which the government has to overcome in order to promote citizen science. It is important that scientists could recognize values of citizen science through the successful government driven citizen science projects and the evaluation tool of scientific career could be modified in order to promote scientist's participation. The project management should be well planned to intensify citizen participation. The government should prepare open data policy which could support a data reliability of the community-led monitoring projects. It is also desirable that a citizen science network could be made with the purpose of sharing best practices of citizen science.
The purpose of this study is developing a information support system for R&D decision making to maximize economic results of the R&D. This system is composed of studying the model of work flow for R&D decision making, analyzing a technology information, connecting with the databases from KISTI and others, and valuing R&D technology on line. Especially in the case of technology valuation, this system is combined with the valuation model which supports knowledge information for helping more objective estimation.
Recently, the frequency and scale of natural disasters such as typhoons, flood, earthquakes, and tidal waves from earthquakes has been increasing. Several nations have recognized that earth observation is essential for protecting the Earth's environment. However, as the data format from earth observation varies depending on areas, institutes, and countries, sharing and exchange between data is difficult. Thus, we have a metadata standardization scheme suitable for the domestic situation to allow exchange of data between societal benefit areas with reference to principles of data sharing and exchange that are discussed on GEO (Group on Earth Observation). We have also designed metadata schemes required to identify the metadata situation of earth observation data being used for 9 societal benefit areas of GEOSS(Global Earth Observation System of Systems).
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.172-172
/
2022
분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.7
/
pp.887-892
/
2023
Vessel traffic service(VTS) centers are equipped with RADAR, AIS(Automatic Identification System), weather sensors, and VHF(Very High Frequency). VTS operators use this equipment to observe the movement of ships operating in the VTS area and provide information. The VTS data generated by these various devices is highly valuable for analyzing maritime traffic situation. However, owing to a lack of compatibility between system manufacturers or policy issues, they are often not systematically managed. Therefore, we developed the VTS Bigdata Platform that could efficiently collect, store, and manage control data collected by the VTS, and this paper describes its design and implementation. A microservice architecture was applied to secure operational stability that was one of the important issues in the development of the platform. In addition, the performance of the platform could be improved by dualizing the storage for real-time navigation information. The implemented system was tested using real maritime data to check its performance, identify additional improvements, and consider its feasibility in a real VTS environment.
This paper investigates synthetic data generation methods and their evaluation measures. There have been increasing demands for releasing various types of data to the public for different purposes. At the same time, there are also unavoidable concerns about leaking critical or sensitive information. Many synthetic data generation methods have been proposed over the years in order to address these concerns and implemented in some countries, including Korea. The current study aims to introduce and compare three representative synthetic data generation approaches: Sequential regression, nonparametric Bayesian multiple imputations, and deep generative models. Several evaluation metrics that measure the utility and disclosure risk of synthetic data are also reviewed. We provide empirical comparisons of the three synthetic data generation approaches with respect to various evaluation measures. The findings of this work will help practitioners to have a better understanding of the advantages and disadvantages of those synthetic data methods.
Recently, due to the rising incidence of disasters in the nation, there has been a growing interest in the relevance and role of science and technology in solving disaster and safety related issues. In addition, the necessities of securing the human rights of all citizens in disaster risk reduction, identifying fields of technology development for effective disaster response, and improving the efficiency of R&D investment for disaster and safety are becoming more important as the different types of disasters and stages of disaster and safety management process have been considered. In this study, we analyzed bipartite or two-mode networks constructed from an expert survey dataset of technology development for disaster and safety management. The results reveal that earthquake and fire are the two disasters affecting an individual and society at large and demonstrate that AI and big data analytics are effective supports in managing disaster and safety. We believe that such a network analytic approach can be used to explore some important implications exist for the national science and technology effort and successful disaster and safety management practices in Korea.
The traditional occupational boundaries of human resources in science and technology (S&T) have quickly blurred in Korea. On the one hand, the knowledge-based economy has emerged and S&T proliferated beyond conventional areas, leading scientists and engineers to advance into various convergence fields. On the other hand, Korea's labor market is characterized by a higher percentage of highly-educated human resources and a relatively smaller number of high-quality jobs. As a result, the highly educated in S&T have flowed over the traditional careers into non-S&T careers. Focusing on doctorates in S&T, this paper analyzes changes in their career patterns and identifies main determinants. Specifically, jobs are categorized into traditional STEM occupations and the others in order to identify fluctuations in their share and to analyze factors affecting such changes. The analyses are based on data from the 'Survey on Careers and Mobility of Doctorate Holders 2012' conducted by the Science and Technology Policy Institute. The results exhibit marked changes in the occupational composition of doctorates in S&T. Occupational diversification has been proceeded faster in natural sciences, the private sector, and the younger generation than in engineering, the public sector, and the older generation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.