In this paper, we propose a semi-automatic modeling approach of ontology to annotate VOD to realize the IPTV's intelligent searching. The ontology is made by combining partial tree that extracts hypernym, hyponym, and synonym of keywords related to a service domain from WordNet. Further, we add to the partial tree new keywords that are undefined in WordNet, such as foreign words and words written in Chinese characters. The ontology consists of two parts: generic hierarchy and specific hierarchy. The former is the semantic model of vocabularies such as keywords and contents of keywords. They are defined as classes including property restrictions in the ontology. The latter is generated using the reasoning technique by inferring contents of keywords based on the generic hierarchy. An annotation generates metadata (i.e., contents and genre) of VOD based on the specific hierarchy. The generic hierarchy can be applied to other domains, and the specific hierarchy helps modeling the ontology to fit the service domain. This approach is proved as good to generate metadata independent of any specific domain. As a result, the proposed method produced around 82% precision with 2,400 VOD annotation test data.
본 논문은 지표면 현상의 관측에 날씨의 영향을 거의 받지 않는 마이크로파 L-밴드(1.95 GHz)와 C-밴드(5.3 GHz) scatterometer 시스템을 이용하여 농업과학기술원 내의 논에서 자라는 추청벼를 대상으로 2006년 5월 29일부터 10월 9일까지 생육에 따른 군락의 후방산란계수를 관측한 데이터와 작물의 생육과의 관계를 살펴보고 또한,측정 시스템의 개요,측정 시스템의 보정 방법들을 기술하고자 한다. Scatterometer 시스템의 송 수신기로 HP 8753D 벡터 네트워크 분석기를 사용하며,타워 위에 안테나를 설치하여 3.4 m의 높이에서 측정하도록 하였다. L-밴 드와 C-밴드 scatterometer는 VV-, VH-, HV-, HH-편파를 측정하여 fully polarimetric한 데이터를 얻도록 설계된 레이더시스템으로 입사각을 $30^{\circ}{\sim}60^{\circ}$에서 $10^{\circ}$간격으로 각각 30개의 독립적인 샘플을 측정하여 통계적으로 후방산란계수를 얻었다. 타워에서 발생하는 전파 잡음과 안테나 패턴의 부엽에 의한 지면에서의 수직반사(coherent 성분) 전파를 제거하기 위해 네트워크 분석기의 time gating 기능을 사용하며,55 cm 크기의 trihedral 전파반사기를 보정용 반사기로 사용하고, STCT(single target calibration technique) 방법을 이용하여 시스템을 보정하였다. 측정 결과를 분석하여 주파수, 입사각도, 편파의 변화에 대한 벼의 후방산란 특성과 벼의 생육상태과의 관계를 살펴보았다. L-밴드와 C-밴드 모두 벼의 생육과 밀접한 결과를 나타내었으나,입사각이 작을 때는 C-밴드와의 상관이 높게 나타났고 입사각이 커질수록 L-밴드와의 상관이 높게 나타났다. 편파는 L-밴드 와 C-밴드 모두 hh 편파가,입사각은 50도에서 가장 생육의 변이를 잘 설명하는 것으로 나타났다. 생육 데이터 모두를 이용한 경우보다는 유수형성기 또는 출수기 등 벼 생육의 질적인 변화를 보이는 시기에 따라 나누어 분석하는 것이 변화추이를 더 잘 설명하는 것으로 나타났다.
Computational Fluid Dynamics(CFD) is a branch of fluid mechanics that solves partial differential equations which represent fluid flows by a set of algebraic equations using computers. Even though it requires multifarious variables, only selected ones are stored because of the lack of storage capacity. It causes the requirement of secondary variable calculations at analyzing time. In this paper, we suggest an efficient method to estimate optimal calculation paths for secondary variables. First, we suggest a converting technique from a dependency graph to a ordinary directed graph. We also suggest a technique to find the shortest path from any initial variables to target variables. We applied our method to a tool for data analysis and visualization to evaluate the efficiency of the proposed method.
Park, Yoosang;Cho, Yongseong;Choi, Jongsun;Choi, Jaeyoung
KIISE Transactions on Computing Practices
/
v.22
no.8
/
pp.387-392
/
2016
Context-aware systems require sensor data collecting model and context representing model to provide user-demand services. Sensor data collecting model consists of sensor access information, sensor value, and definition of value types. Context representing model involves certain keywords to symbolize environmental information including the field from sensor data collecting model that is described in markup language such as XML. However, duplicated keywords could be assigned to different contextual information by service developers. As a result, the system may cause misunderstanding and misleading wrong situational information from unintended contextual information. In this paper, we propose a context classification model for collecting appropriate access information and defining the specification of context.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.234-241
/
2021
By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.355-357
/
2022
In this paper, as a positioning technology for predicting the movement path of a moving object using a recurrent neural network (RNN) model, which is a deep learning network, in an indoor environment, continuous location information is used to predict the path of a moving vehicle within a local path. We propose a movement path generation technique that can reduce decision errors. In the case of an indoor environment where GPS information is not available, the data set must be continuous and sequential in order to apply the RNN model. However, Wi-Fi radio fingerprint data cannot be used as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, we propose a movement path generation technique for a vehicle moving a local path in an indoor environment by giving the necessary sequential location continuity to the RNN model.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.473-478
/
2022
Evaluation learning based on code testing is becoming a popular solution in programming education via Online judge(OJ). In the recent past, many papers have been published on how to detect plagiarism through source code similarity analysis to support OJ. However, deep learning-based research to support automated tutoring is insufficient. In this paper, we propose Input & Output side FiLM models to predict whether the input code will pass or fail. By applying Feature-wise Linear Modulation(FiLM) technique to GRU, our model can learn combined information of Java byte codes and problem information that it tries to solve. On experimental design, a balanced sampling technique was applied to evenly distribute the data due to the occurrence of asymmetry in data collected by OJ. Among the proposed models, the Input Side FiLM model showed the highest performance of 73.63%. Based on result, it has been shown that students can check whether their codes will pass or fail before receiving the OJ evaluation which could provide basic feedback for improvements.
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.347-353
/
2023
Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.2
/
pp.191-204
/
2024
This study analyzes the effects of manufacturing firms' R&D investment on sales according to global political economic uncertainty. The variables in this research include the firm's R&D investment, sales, which serves as an indicator of the firm's performance, and the Global Economic Policy Uncertainty (GEPU) index, which reflects situations of global political economic uncertainty. Panel data analysis is conducted by using a total of 96 quarters of data spanning 24 years from 2000 to 2023 based on manufacturing firms in the Wharton Research Data Services' Compustat Database. We study the impact of firm's R&D investment on sales by considering the Global Economic Policy Uncertainty index, which was relatively underestimated in previous research, as moderating variable, and present a new direction for research by analyzing the time lag effect. We suggest effective R&D investment strategy for firms.
Recently, According to computer technology has been improving, Massive customer data has stored in database. Using this massive data, decision maker can extract the useful information to make a valuable plan with data mining. Data mining offers service providers great opportunities to get closer to customer. Data mining doesn't always require the latest technology, but it does require a magic eye that looks beyond the obvious to find and use the hidden knowledge to drive marketing strategies Automotive market face an explosion of data arising from customer but a rate of increasing customer is getting lower. therefore, we need to determine which customer are profitable clients whom you wish to hold. This paper builds model of customer loyalty detection and analyzes customer patterns in automotive market with data mining using association rule and basic statics methods. With 4he help of information technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.