Jo, Yeon-Jeong;Eom, Hyun-Min;Sim, Chae-Lin;Koo, Hyeong-Seo;Lee, Myung-Joon
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.9
no.10
/
pp.797-808
/
2019
In a closed workplace, the management of the workplace is important because the environmental data at the workplace has a great influence on the safety of workers. Today's industrial sites are transformed into data-based factories that collect and analyze data through sensors in those sites, requiring a management system to ensure safety. In general, a safety management system stores and manages data on a central server associated with a database. Since such management system introduces high possibility of forgery and loss of data, workers often suspect the reliability of the information on the management system. In this paper, we present a worker safety management system based on the EOS blockchain which is considered as third-generation blockchain technology. The developed system consists of a set of smart contracts on the EOS blockchain and 3 decentralized applications associated with the blockchain. According to the roles of users, the worker and manager applications respectively perform the process of initiating or terminating tasks as blockchain transactions. The entire transaction history is distributed and stored in all nodes participating in the blockchain network, so forgery and loss of data is practically impossible. The system administrator application assigns the account rights of workers and managers appropriate for performing the functions, and specifies the safety standards of IoT data for ensuring workplace safety. The IoT data received from sensor platforms in workplaces and the information on initiation, termination or approval of tasks assigned to workers, are explicitly stored and managed in the EOS smart contracts.
Journal of The Korean Association For Science Education
/
v.33
no.2
/
pp.486-500
/
2013
This study is conducted to examine how epistemic reasoning and argument structures of students vary according to data sources used in the process of argumentation implemented in the context of inquiry. To this end, three argument tasks using first-hand data and three argument tasks using second-hand data were developed and applied to the unit on 'Nutrition of Plants' for first year middle school students. According to the results of this study, epistemic reasoning of students manifested during the process of argumentation and varied according to data sources. While most students composed explanations with phenomenon-based or relation-based reasoning in argumentation using first-hand data, all the small groups composed explanations that included model-based reasoning in argumentation using second-hand data. In the case of arguments including phenomenon-based or relation-based reasoning, students described only observable characteristics, with warrants omitted from arguments in many cases. On the other hand, in the case of arguments that included model-based reasoning, explanations were composed by combining the results of observations with theoretical knowledge, with warrants more apparent in their arguments.
In this study, we examined the effect of socioscientific issue (SSI) based science lessons on underachieving 9th-grade students. A total of seven lessons centered on two SSIs related to the national science curriculum were developed and implemented during the first semester of 2021. Data were collected from 185 9th-grade students in one middle school in a mid-sized city of South Korea. Among them, 37 were identified as achieving far below the standards (underachieving students hereafter). Quantitative data were collected from pre- and post-tests on basic science content and attitudes and competency measures. To supplement quantitative data, lesson observation notes were recorded, and student interviews with a selected number of students were conducted. The analysis of quantitative data was conducted through the Wilcoxon Signed Rank Test and paired t-tests. Qualitative data were analyzed to find reasons for changing attitudes. The findings showed that the SSI-based lessons were more effective on underachieving students than the others in enhancing basic academic achievement, while there was no significant effect on all in attitudes and competency. Lesson observation data showed that underachieving students were more engaged in SSI-based lessons than before. Student interviews demonstrated several reasons why they were engaged, suggesting the aspects of SSI-based lessons that facilitated underachieving students' learning. Further research topics are suggested.
Recently we have found some symptoms that R&D fiscal incentives might not work well what it has intended through the analysis of current statistics of firm's R&D data. Firstly, we found that the growth rate of R&D investment in private sector during the recent decade has been slowdown. The average of growth rate (real value) of R&D investment is 7.1% from 1998 to 2005, while it was 13.9% from 1980 to 1997. Secondly, the relative share of R&D investment of SME has been decreased to 21%('05) from 29%('01), even though the tax credit for SME has been more beneficial than large size firm, Thirdly, The R&D expenditure of large size firms (besides 3 leading firms) has not been increased since late of 1990s. We need to find some evidence whether fiscal incentives are effective in increasing firm's R&D investment. To analyse econometric model we use firm level unbalanced panel data for 4 years (from 2002 to 2005) derived from MOST database compiled from the annual survey, "Report on the Survey of Research and Development in Science and Technology". Also we use fixed effect model (Hausman test results accept fixed effect model with 1% of significant level) and estimate the model for all firms, large firms and SME respectively. We have following results from the analysis of econometric model. For large firm: i ) R&D investment responds elastically (1.20) to sales volume. ii) government R&D subsidy induces R&D investment (0.03) not so effectively. iii) Tax price elasticity is almost unity (-0.99). iv) For large firm tax incentive is more effective than R&D subsidy For SME: i ) Sales volume increase R&D investment of SME (0.043) not so effectively. ii ) government R&D subsidy is crowding out R&D investment of SME not seriously (-0.0079) iii) Tax price elasticity is very inelastic (-0.054) To compare with other studies, Koga(2003) has a similar result of tax price elasticity for Japanese firm (-1.0036), Hall((l992) has a unit tax price elasticity, Bloom et al. (2002) has $-0.354{\sim}-0.124$ in the short run. From the results of our analysis we recommend that government R&D subsidy has to focus on such an areas like basic research and public sector (defense, energy, health etc.) not overlapped private R&D sector. For SME government has to focus on establishing R&D infrastructure. To promote tax incentive policy, we need to strengthen the tax incentive scheme for large size firm's R&D investment. We recommend tax credit for large size film be extended to total volume of R&D investment.
Kim, Naeon;Jeong, Sihyun;Jang, Boyeon;Kim, Chong-Kwon
Journal of KIISE
/
v.44
no.4
/
pp.417-422
/
2017
Anomaly detection is the identification of data that do not conform to a normal pattern or behavior model in a dataset. It can be utilized for detecting errors among data generated by devices or user behavior change in a social network data set. In this study, we proposed a new approach using rank correlation coefficient to efficiently detect abnormal data in devices of a building. With the increased push for energy conservation, many energy efficiency solutions have been proposed over the years. HVAC (Heating, Ventilating and Air Conditioning) system monitors and manages thousands of sensors such as thermostats, air conditioners, and lighting in large buildings. Currently, operators use the building's HVAC system for controlling efficient energy consumption. By using the proposed approach, it is possible to observe changes of ranking relationship between the devices in HVAC system and identify abnormal behavior in social network.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.1
/
pp.221-228
/
2018
Big data is an important keyword in World's Fourth Industrial Revolution in public and private division including IoT(Internet of Things), AI(Artificial Intelligence) and Cloud system in the fields of science, technology, industry and society. Big data based on services are available in various fields such as transportation, weather, medical care, and marketing. In particular, in the field of sports, various types of bio-signals can be collected and managed by the appearance of a wearable device that can measure vital signs in training or rehabilitation for daily life rather than a hospital or a rehabilitation center. However, research on big data with vital signs from wearable devices for training and rehabilitation for baseball players have not yet been stimulated. Therefore, in this paper, we propose a system for baseball infield and outfield players, especially which can store and analyze the momentum measurement vital signals based on big data.
Journal of Korean Society of Archives and Records Management
/
v.21
no.1
/
pp.211-230
/
2021
This study aims to design folk song metadata based on the OAIS reference model for the folk songs' preservation and permanent use. Thus, the folk songs' general characteristics were investigated by researching literature and related technical standards. The type of records, the methods and standards for long-term storage of records, OAIS reference models, and each package's metadata elements were identified through opinions from the popular songs' creators and researchers. The results awere that first, folk songs were created for social transformation, serving as a cultural heritage different from popular songs given their noncommercial quality. Second, the types of folk song records were identified, and the long-term preservation system suitable for the types of records was based on the OAIS reference model. Third, the metadata were edited, and the OIS reference model was applied such that respect was given to the folk songs' characteristics, context, and original order. Fourth and last, information package metadata elements matching the folk songs' records were derived and applied to the representative Korean folk song, "The March for Being."
Kim, Imgyu;Kim, Hyuncheol;Kim, Seung Yun;Shin, Sangyong
Journal of the Korea Convergence Society
/
v.12
no.2
/
pp.21-28
/
2021
In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.
Science, technology and innovation (STI) has expanded the activity of actors from the traditional physical territory to the cyberspace. Data-driven platform services and markets advance new discussions on cross-border cooperation and cyber security, as well as discourse on sovereignty in cyberspace. These changes are also affecting the hegemony competition between the US and China. In particular, competition for aid to developing countries that are located along major resource transportation routes, such as natural gas and deep sea resources, is fierce. ASEAN is not only a geopolitical military and security point where the US and China powers collide, but its population of 600 million has great potential for the development of the digital economy due to its data resources. In this regard, this article aims to connect the discourse of liberalism and authoritarianism with data regulation and cybersecurity in international development cooperation, and derive implications for ASEAN integration through this. This study has significance as a convergence study that links international political issues related to big data in terms of global governance.
Journal of The Korean Association For Science Education
/
v.41
no.1
/
pp.59-70
/
2021
Ability to make informed decisions by critically evaluating media information on socioscientific issues (SSI) is one of the crucial elements of scientific literacy that citizens should obtain. This study aims to investigate how middle school students evaluated media information about socioscientific issues (SSI) when they faced two different types of information (i.e., numerical and empathic information). To achieve the aim, 96 middle school students responded to the questionnaires asking them to evaluate reliability and persuasiveness of SSI media information. The questionnaires consisted of two sets of newspaper articles on each SSI (pro-numerical/empathic, against-numerical/empathic). After reading the articles, the students evaluated reliability and persuasiveness of each article and wrote the reasons for their evaluation. The results were as follows: First, the students believed that news articles with numerical information were more reliable than the ones with empathic information in all SSI contexts. They tended to trust scientific evidence and data from numerical information, and real cases, societal problems, expressions, and values from empathic information. In addition, they evaluated their reliability based on the logic of information, accuracy of information, breadth and depth of data, and quantity and quality of sources both numerical and empathic information. Second, in case of evaluating persuasiveness of the articles, they focused more on the values that information contained, richness and logicality of the information, rather than the types of information, regardless of the type of information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.