• Title/Summary/Keyword: 과다변위

Search Result 55, Processing Time 0.022 seconds

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

A Study on the Dynamic Lateral Displacements of Caisson Quay Walls in Moderate Earthquake Regions (중진지역에서 케이슨 안벽의 동적수평변위 특성에 관한 연구)

  • Park, Keun-Bo;Sim, Jae-Uk;Cha, Seung-Hun;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.137-148
    • /
    • 2008
  • In this study, 28 earthquake records with magnitudes from 5.3 to 7.9 are selected for dynamic analysis in order to assess applicability of the earthquakes for domestic seismic design. The assessment is performed using the seismic spectrum analysis of energy and acceleration. Based on results of the analysis, four acceleration time histories, which satisfy the Korean design standard response spectrum, are proposed. From the dynamic analysis using earthquake magnitudes from 6.4 to 7.9, it is found that horizontal displacements corresponding to earthquake magnitudes greater than 7 are two times larger than those with magnitude 6.5. Therefore, it can be stated that use of strong earthquakes, such as Miyagiken-ken-oki earthquake (Ofunato, $M_{JMA}=7.4$) and Tokachi-oki earthquake (Hachinohe, $M_{JMA}=7.9$), for the seismic design in Korea is not applicable, and may prove to be excessively conservative due to overestimated seismic force. From the dynamic analyses using the proposed acceleration time histories, effects of caisson quay wall dimension and the subsoil condition are investigated as well. The simplified design charts to evaluate horizontal displacements of caisson quay wall are also proposed based on earthquake magnitude 6.5 that is appropriate in Korea.

Probabilistic Neural Network for Vibration Control of Structures (구조물의 능동제어를 위한 확률신경망 이론)

  • Kim, Doo-Kie;Chang, Seong-Kyu;Kim, Dong-Hyawn;Lee, Jong-Jae
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.382-389
    • /
    • 2006
  • 구조 재료와 시공기술의 발달로 구조물은 높고 길게 설계할 수 있게 되었으나, 그에 따른 진동 문제와 사용성에 관한 문제가 발생하였고 구조물의 과다한 변위는 구조물에 심각한 손상을 발생 시켰다. 이러한 구조물의 진동 문제를 해결하기 위하여 본 논문에서는 확률신경망이론을 사용한 구조물의 능동제어방법을 제안하였다. 구조물의 제어를 위하여 LQR 제어알고리즘을 이용하여 구조물의 상태벡터와 제어력을 구한 후, 상태벡터를 입력으로 제어력을 출력으로 하는 확률신경망의 훈련패턴을 구성하였다. 제안된 방법을 사용하여 지진하중을 받는 3층 빌딩구조물을 제어하였고, 기존의 인공신경망의 제어 결과와 비교하였다.

  • PDF

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil (사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Kwak, Yeon Min;Park, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2013
  • To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.

Behaviour Analysis of Crown Collapse under Tunnel Construction After Completing Reinforcement (보강완료 후 시공 중 터널 천단부 붕락 거동 분석)

  • Kim, Nagyoung;Baek, Seungchol;Min, Kyungjun;Kim, Bongsu;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2016
  • The final stability analysis of the tunnel structure is generally evaluated by performing site monitoring to determine whether or not the measured value through the convergence after the completion of excavation in the face. When the ground conditions are so poor, the reinforcement around the tunnel was applied for enhancing the stability of tunnels. For the additional tunnel crown collapse or excessive displacement have occurred under construction, correlation analysis were performed for the comparison construction and numeric analyses. In this paper, we investigated the collapse types, tunnel collapse were mostly occurs at the crown and they were analyzed because of the geological conditions in the collapse zone. And also, it was analyzed as being correlated in the crown of tunnel exists a fault fracture zone which extends to the surface part. Thus, in case of ground conditions such as fault fracture zone with a tunnel extending from the crown to the surface, the behavior is larger than the behavior predicted by numerical method.

임상가를 위한 특집 2 - 구강악안면영역에서 양성 종양의 영상진단

  • Kim, Gyeong-A
    • The Journal of the Korean dental association
    • /
    • v.47 no.10
    • /
    • pp.637-646
    • /
    • 2009
  • 양성 종양(benign tumor)을 언급하기에 앞서 과오종(hamartoma) 및 과다 형성(hyperplasia)과의 차이를 구분할 필요가 있다. 양성 종양은 기원조직과 유사한 조직이 이상 증식하는 것으로 서서히 성장하지만 일반적으로 치료하기 전까지 이상 증식을 지속하는 진성 신생물을 일컫는다. 이에 비해 과오종은 정상 조직이 무질서하게 과증식하는 것으로 일정기간 후에는 성장을 멈추기 때문에 진성 신생물로 간주하지 않는다. 그러나 일부 과오종이 양성 종양에 포함되기도 하는데, 예를 들어 치아종은 정상적인 치성 조직의 성장이 완료되는 시기와 거의 동일한 시기에 성장을 멈추지만 양성 종양으로 분류된다. 과다 형성은 조직의 세포가 정상적인 배열 양상을 보이면서 세포의 수가 증가하는 것으로 지속적인 성장 양상을 보이지만 그 성장이 제한적이므로 양성 종양과는 구별된다. 양성 종양은 일반적으로 무통성으로 서서히 성장하기 때문에 종양의 크기가 증가하여 안면 종창이나 동통 등을 유발하는 경우에 발견될 수 있으며, 방사선검사에서 우연히 발견되기도 한다. 방사선검사는 병소의 위치, 범위, 특징 및 병소와 인접 해부학적 구조와의 관계 등 많은 방사선학적 진단 정보를 제공한다. 일부 종양은 방사선사진에서 매우 특징적인 소견을 나타내기 때문에 방사선학적 소견으로 예비 진단을 할 수 있을 정도의 진단정보를 제공하기도 하는 반면 어떤 종양들은 방사선사진에서 관찰되는 소견이 매우 유사하여 진단에 어려움을 주기도 한다. 따라서 종양의 확진을 위해서는 생검이 필수적이며, 방사선검사는 반드시 생검에 앞서 진행되어야만 정확한 방사선학적 진단을 할 수 있다. 양성 종양은 각각의 특징적인 방사선학적인 소견을 나타내지만 일반적으로 관찰되는 양성 종양의 특징이 존재하므로 이러한 일반적인 특징을 관찰하여 병소가 양성인지 악성인지를 감별할 수 있다. 첫째, 양성 종양은 대개 호발하는 부위가 있으므로 종양의 발생부위는 감별 진단을 하는 데 매우 중요하다. 일반적으로 치성 병소는 치아가 형성되는 하악관 상방의 치조돌기에서, 혈관성 및 신경성 병소는 하악관 내에서, 연골성 종양은 하악과두와 같이 연골세포가 잔존되어 있는 부위에서 발생하는 경우가 많다. 둘째, 양성 종양은 대체로 명확한 경계와 피질골성 변연을 보이며, 종종 병소가 결체조직으로 둘러싸여 있어 병소 주위에 방사선투과성 띠가 관찰되기도 한다. 셋째, 양성 종양은 일반적으로 인접 주위 조직에 압력을 가하면서 서서히 성장하기 때문에 인접 치아의 변위 또는 흡수, 피질골의 비박, 팽융 등의 소견을 보이며 피질골의 천공은 드물다. 방사선학적으로 양성 종양의 병소 내부는 방사선투과상으로 관찰되거나, 방사선불투과상으로 관찰되거나, 방사선투과상과 방사선불투과상이 혼재된 상으로 관찰된다. 저자는 이 지면에서 이러한 방사선학적 특징을 기초로 하여 구강악안면영역에 발생하는 양성 종양을 분류하고 각각의 특징에 대해 살펴보고자 한다.

  • PDF

Upheaveal Behaviour of Tunnel Bottom in the Weatherd Fracture Zone under Tunnel Excavation (터널 굴착 중 바닥부 연약대로 인한 터널 융기 거동 사례 분석)

  • Chang, Yongchai;Kim, Nagyoung;Jin, Kyudong;Son, Yongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • The stability of tunnel construction depends entirely on the characteristics of the soil strength. If the soil strength is weak, collapse of tunnel occurs frequently under construction. In general, it copes with collapse by conducting half section excavation or reinforcement in advance under these conditions. Nevertheless, it can be collapsed under upper section excavation in the weathered fracture zone and it can be recovered through the application of reinforcement. As it has a bad influence on the upper section in case of upheaveal of tunnel bottom, it can be adversely affected on the overall stability of the tunnel. Thus, an in-depth review of reinforcement is needed in poor bottom ground. As the practices that has a bad affect on the stability of the tunnel due to upheaveal of tunnel bottom is increasing, research is needed for applicable standards for reinforcement. In this paper, it were investigated at actual field cases of upheaveal of bottom ground and characteristics of behavior and reinforcement measures were analyzed.

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

Study on the Occurrence of Tunnel Damage when a Large-scale Fault Zone Exists at the Top and Bottom of a Tunnel (대규모 단층대가 터널 상하부에 존재하는 조건에서 터널 변상 사례 연구)

  • Jeongyong Lee;Seungho Lee;Nagyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, along with the improvement of high-speed rail and road design speed, the proportion of tunnel construction work is increasing proportionally. In particular, the construction of long tunnels is rapidly increasing due to the mountainous terrain of our country. In this way, due to the trend of tunnels becoming longer, it is difficult to design and construct tunnels by avoiding fault zones. In the case of tunnel construction in mountainous areas, ground investigation is often difficult even during design due to the topographical conditions, making precise ground investigation difficult, and as a result, the upper part of the tunnel is damaged during tunnel construction. When fault zones, which are vulnerable to weathering, exist, the stability of the tunnel during excavation is directly affected by the fault zone distribution, strength characteristics, and groundwater distribution range. In particular, when a fault zone is distributed in the upper part of a tunnel, damage such as tunnel collapse and excessive displacement may occur, and in order to prevent this in advance, countermeasures must be established through analysis of similar cases. Therefore, in this study, when a large-scale fault zone exists in the upper part of a tunnel, the relationship and characteristics of damage to the tunnel structure were analyzed.

Numerical Analysis on the Behavior of Revetment Reinforced by Sand Compaction Pile According to Area Replacement Ratio (수치해석을 이용한 모래다짐말뚝 치환율에 따른 호안 구조물의 거동 분석)

  • Kim, Byoung-Il;Bong, Tae-Ho;Han, Jin-Tae;Jang, Young-Eun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • Sand compaction pile (SCP) is a ground improvement method which is used to secure the stability of the soft ground by using a type of replacement pile filled with coarse grained material. The behavior characteristics of the SCP, which is frequently used for improving both the onshore and offshore ground, is governed by the ground condition, the installation method, and replacement ratio. Therefore, the stability of the SCP in terms of the bearing capacity and displacement needs to be evaluated considering both the design values and in-situ conditions of construction site. In this study, numerical analysis is carried out based on the conditions of 00 revetment construction site in South Korea where unexpected displacement occurred during construction of SCP. Based on the analysis results, the displacement of the revetment structure according to the replacement ratio of the SCP was compared to the result calculated from design formulas. The results showed that the lateral displacement can be exceeded the reference value from proposed criteria regardless of increased replacement ratio of SPC. It is also confirmed that the behavior of the structure according to the replacement ratio of SPC in not reflected in the existing calculation methods. Therefore, the stability of the SCP composite ground should be examined through the site inspection after the SCP construction.