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Probabilistic Neural Network for Vibration Control of Structures
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1. Introduction

Civil structures such as high-rise buildings, towers and long span bridges need to be
designed safely and reliably under dynamic loads of earthquake, wind, and vehicle. Structures
under construction and plan become longer and higher, and economic and beautiful design
also comes to be possible with the development of new materials and construction techniques.
However, such modern structures are susceptible to excessive structural vibrations, which
may induce a problem of serviceability and a structural damage.

Pole assignment, optimal control, adaptive control, Fuzzy control, neural control, etc. have
been developing as an active control technique to solve relevant structural vibration problems.
Effective and reliable structural control theory started to be published by Yao". Structural
active controls using an artificial neural network(ANN) were published by Chen? and

Ghaboussi¥, In the paper, they introduced learning ability of neural network in the design of a
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controller to control structural vibration during earthquake. After that, Kim¥ proposed ANN
learning method using the cost function and performed the structural vibration control for
three degrees of freedom(3DOF) structure.

In this paper we attempt to control structural vibration using a probabilistic neural
network(PNN). The state vectors of the structure and control forces are used for training
pattern of PNN, In which, control forces are made by linear quadratic regulator(LQR) control
under El Centro(1940), Hachinohe(1968), California(1952) and KS artificial earthquakes.
Northbridge earthquake(1994) are used to verify the proposed structural control. Control

capability by PNN is compared with that by ANN.
2, Active Control Method using Probabilistic Neural Networks

2.1 State-space equation
The equation of motion of a structural system with »n degrees of freedom subjected to an

earthquake and the control force can be expressed as

[M1i} +[CTay + K Huy = (LIS + LSS M

where [M], [C] and [K] are, respectively, the nxn mass, damping and stiffness

matrices; {u(t)} is the n -dimensional displacement vector; {f.(f)} is the control force

vector; {f,(f)} is the excitation load vector proportional to the ground acceleration, {ii,};

and [L,] and [L,] are the location matrices of the control force and the excitation,

respectively.

{f}=-[M1{u,} @)
[L]=<1 0>' €)]
[L1=<1 157 4)

Premuitipling [M]" in both sides of equation (1), the equation of motion is as follows

(i} + [ M1 [CHay +[[M ] [K 1 {u}

= e (5)
=[MTL WSS+ ML
The corresponding state—space equation is as follows
{2} =41z} + (LIS + LSS (6)
{z(t)} =<u(t) u(0)>" @)
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Where {z(t)} is state vector; [A] is system matrix; and [L,] and [L,] are location
matrices, respectively, corresponding to the locations of controllers and external excitations

in the state spaceS).

2.2 LQR Control Algorithm
In this paper, linear quadratic regulator(LQR) is used to compose training patterns of PNN.
According to LQR control method, the control force {f,(f)} is to be chosen in such a way

that a performance index (J), defined as

J(5)= [ (= 1QMz) + (RIS, Dar (10)

In equation (10), [Q] is a 2nx2n positive semi-definite matrix; [R] is a mxm positive
semi-definite matrix; and control forces with m degrees of freedom are applied. [Q] and
[R] are referred as weighting matrices. The optimal control force for LQR is denoted as

follows

{£,} =GNz} = -[RT"[B"1[S)z} (1

Where [G] is the control gain, and the solution of Riccati equation [S] is obtained from
equation (12).

[4"1[ST+[S)[A4]-[SIBIRT'[BT [S]+[Q] =0 (12)
Therefore, the control force is calculated by the product of the control gain([G]) and state

vector of system({z})?.

2.3 Probabilistic neural networks
PNN is basically a pattern classifier that combines the well~known Bayes decision strategy
with the Parzen non-parametric estimator of the probability density functions of different

classes”

. PNN has gained interest because it offers a way to interpret the network’s
structure in the form of a probability density function and it is also easy to implement. An
accepted norm for decision rules or strategies used to classify patterns is that they do so in a
way that minimizes the "expected risk." Such strategies are called "Bayes strategies" and can
be applied to problems containing any number of classes.

Consider the two-category situation in which the state of nature & is known to be either

6, or @,. If it is desired to decide whether =6, or #=60, based on a set of
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measurements represented by the p-dimensional vector X’:[X]...X‘,....Xp], the Bayes

decision rule becomes

dX)=06, if hl,f,(X)> hply f,(X) (13a)

dX)=0, if hl,f,(X)<hglyf:(X) (13b)
where f,(X) and f,(X) are the probability density functions for categories A and B,
respectively; [, is the loss function associated with the decision d(X)=0;when 6=60,;
I, is the loss associated with the decision d(X)=6, when 0, =0, (the losses associated
with correct decisions are taken to be equal to zero); h, is the priori probability of
occurrence of patterns from category A; and h, =1-h,is the priori probability that 6 =6,.
In the simplified case that assumes both loss function and a priori probability are equal to
each other, the Bayes rule classifies an input pattern to the class that has its probabilistic
density functron(PDF) greater than the PDF of the other class. Therefore, the accuracy of the
decision boundaries depends on the accuracy with which the underlying PDFs are estimated.
Parzen® showed how one may construct a family of estimates of £(X), and Cacoullos” has
also extended Parzen's results to estimates in the special ease that the multivariate kernel is
a product of univariate kernels. In the particular case of the Gaussian kernel, the multivariate

estimates can be expressed as

FX) =L L iexp{‘ (X-X,) (X—Xﬂ -

Qmy"o? 20°

where X is the test vector to be classified; f,(X) is the value of the PDF of category A4

at point X; m is the number of training vectors in category A, p is the dimensionality of
the training vectors; X, is the i training vector for category A; and o is the smoothing

parameter. Note that although f,(X) is simply the sum of small multivariate Gaussian

distributions centered at each training sample, the sum is not limited to being Gaussian.

2.4 Active control using PNN

In order to apply the PNN theory in the vibration control of the structure, the rule base of
the PNN needs to be composed. In this study, the rule base is made by a state vector and a
control force as an input and an output, respectively. The state vector and control force are
derived by LQR control algorithm for arbitrary earthquakes, and then the proposed PNN
control algorithm is verified for new earthquakes. Fig.’s 1 and 2 show the basic control

flowchart and controller using the PNN control algorithm.
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3. Numerical Application

To illustrate the proposed method, a model of three story shear building with the active
tendon control system is considered as shown in Fig., 3. The state vector of the structure
and the control force that are derived by LQR control under El Centro, Hachinohe, California
and KS artificial earthquakes are used for training pattern of the PNN, Then Northbridge

earthquake is used to verify the proposed PNN control algorithm.

3.2 Comparison of the control capability of the PNN and the ANN

In this section, we compared the control capability of thé PNN with that of the ANN,
Controlled and uncontrolled responses under Northbridge earthquake are shown in Fig.’s 4
and . From the figures, the structural displacement and velocity responses have been
suppressed effectively by the both control algorithm. In which, the decreasing rates of the
maximum displacement in the first floor by the PNN and the ANN algorithm are 51.9% and
54 8%, respectively. Although the decreasing rates by the PNN and the ANN are not
noticeable, the PNN control algorithm has many strong points over the ANN control algorithm.

The ANN needs a re-training process and much computational time in training the network.
However, the PNN as a pattern classifier needs less time to determine the architecture of the
network and to train the network. Moreover, the PNN provides the probabilistic viewpoints as
well as deterministic classification results in order to consider the uncertainties in the control

process,
4, Conclusions

“In this study, a control method using the PNN is proposed for a structural vibration
subjected to earthquakes, The proposed algorithm is applied and verified for the vibration
control of the three story shear building under earthquakes. The PNN control shows good

results, and the results are compared with those of the ANN.,
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Fig. 2 Block diagram of PNN controller
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Fig. 4 Displacement time history of structure subjected to Northbridge earthquake(0.344g)

- 388 -



uncontrolled |!

nny controt
L naeonre

\(\(-’W Aj'\\;\;w@wfwimj‘

Velocity(misec)

time(sec)

First floor

Velocity(m/sec)

05 H " H ; H H H
4

time(sec)

Second floor

uncontrolied ||
an contral |

Velocity(m/sec)

time(sec)

Third floor

Velocity(misec)

Velocity(Vsec)

Velocity(misec)

unconlm"ed
pnn controt

[ ) A:
W‘}\‘ »W‘M mm«}wwwvwm

time(sec)

First floor

time(sec)

Second floor

time(sec)

Third floor

Fig. 5 Velocity time history of structure subjected to Northbridge earthquake(0.344g)
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