As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.
초고압 가공처리는 별동의 화학 보존제를 사용하지 않고도 저온에서 식품유래 미생물을 사멸시킬 수 있기 때문에 식품분야에서 주목받는 새로운 가공기술이다. 이러한 초고압 처리의 장점 덕분에 관능적 특성이 우수하고 영양성분이 그대로 보존되는 고품질 식품의 제조도 가능하다. 고압 조건에서의 미생물 사멸정도를 측정하기 위해서는 흔히 실험실 규모의 장비(그림 1)을 사용하여 소량의 미생물 접종액을 처리함으로서 대량 처리시(그림 2)의 양상을 예측할 수 있다. 초기에 개발된 실험실 귬의 초고압 처리장비에는 일반적으로 고압용기 내부에 온도감지 장치가 부착되어 있지 않아, 압력 조건 하에서의 압축발열 및 순간 감압냉각 효과가 제대로 보고되지 않았다. 그러나 가열효과를 고려하지 않으면 초고압 처리기 특유의 가압 특성 대문에 실험 결과의 재현성을 얻기가 힘들고, 특히 대용량 생산설비의 경우 더욱 그러하다. 이론적으로 초고압 처리는 매우 예측 가능한 공정이다. 즉 고압요기 내부에서는 어느 지점이던 간에 압력이 고르게 분포되고, 가열 확산에 근거한 처리공정과는 달리 압력이 모든 지점에 순간적으로 공정상 불균일이 야기될 소지가 있는 부분은 오직 압축에 다른 발열과 열 전달에 의한 온도 편차에 기인한다. 실제로 처리 대상 제품과 압력 전달매체의 압축시 발열정도 차이와 시료, 매체, 고압용기 간의 열 손실 또는 열 흡수 대문에 고압처리 공정에서 온도가 일정하지 않을 수 있다.
실제 복합재료 제조공정에 널리 이용되는 등방성 탄소섬유직조와 에폭시수지에 대 해서 수지의 유동을 일방향으로 근사하여 비정상상태 투과계수와 모세관압을 측정하는 실험 을 수행하였고 적층된 섬유직조의 기공율, 금형 주입압력 그리고 섬유직조의 적층수에 따른 수지유동특성을 분석하였다. 또한 금형 충전과정에 대한 유동가시화 실험을 수행하여 유동 선단과 충전시간을 측정하였다. 전체 조업압력에 미치는 모세관압의 영향을 규명하기 위해 일정 유입압력에 따른 금형충전과정에 대하여 유한요소/관할부피 방법을 이용한 수치모사를 수행하였다. 함침공정의 수지유동에서 비정상상태 투과계수는 섬유직조의 기공율에 따라 급 격히 증가하였고 에폭시수의 표면장력에 기인한 모세관압은 기공율 감소에 따라 급격히 증 가하였다. 동일한 기공율에서 섬유직조의 적층수가 증가함에 따라 투과계수와 모세관압은 모두 증가하는 경향을 보였다. 또한실험에서 측정한 모세관압을 고려하여 유동선단과 금형 충전시간을 수치모사방법으로 예측ㄷ한 결과는 유동가시화 실험에의한 결과와 잘 일치함을 보였다. 이결과로부터 낮은 압력에서 조업하는 RTM공정에서 모세관압효과는 유동선단과 금형 충전시간을 예측하는데 기여함을 알수 있다.
반도체 제조 공정의 진단 및 고장 예측 시스템을 개발하기 위해 PCA(Principal Component Analysis) 기법을 적용하여 데이터 분석을 하고자 하며, 이에 대한 이론적인 연구와 연구 수행 절차를 구체적으로 정립하였다. 비쥬얼 C++에서 MATLAB과 PLS_Toolbox 등을 연동하여 직관적이고 시각적이며 사용자가 효율적으로 공정 현장에 적용할 수 있는 시스템을 개발하고자 한다. 지금까지 PCA와 관련한 다양한 문헌 조사를 수행하였고, 이론적인 연구를 하였다. 비쥬얼 C++ 프로그램에서 MATLAB과 PLS_Toolbox 등을 연동하기 위해 필요한 환경 선정 등을 완료하였으며, 초기 단계의 간단한 모듈들을 개발하였다. 다음 단계의 모듈들은 좀 더 빠른 시간에 개발할 수 있을 것으로 기대한다. 이를 공정 현장에서 수집한 다양한 데이터에 적용하여 그 결과를 피드백하여 시스템을 수정하고 보완하고자 하며, 마지막으로 현장에 적용하고자 한다.
As high-tech science has developed, the need of semiconductor is required constantly. However, there are many processes which use a great deal of poisonous gas in the semiconductor process, so the dangerousness by a gas leak is latent in these processes. Especially, the accident of toxic gas is almost made by ammonia and chlorine. Therefore this report estimates the damage by the leak of ammonia and chlorine used in LPCVD system.
Proceedings of the Korea Society for Energy Engineering kosee Conference
/
1994.11a
/
pp.17-22
/
1994
오류역전파 신경망을 인산형 연료전지의 조업변수인 산소 및 수소 유량, 작동온도에 대하여 학습시켜 연료전지 모델을 구성하였다. 또한 구성된 모델을 이용하여 다양한 조업조건에서의 단위전지 성능을 예측하여 이를 실험결과와 비교하였으며, 학습된 신경망을 ASPEN PLUS의 단위공정으로 도입하여 50kW 출력의 연료전지 공정을 구성한 후 조업변수에 대한 영향을 살펴보았다. 3개의 층으로 구성된 오류역전파 신경망은 학습단계상수와 모멘텀이 각각 0.7 및 0.9인 경우 단위전지 성능곡선을 가장 정확히 학습하였으며, 이에 의하여 구성된 신경망 모델은 수소 및 산소의 유량, 온도의 변화에 따른 단위전지 성능곡선의 변화를 정확히 예측하였다. 연료전지 전체공정의 모사에서는 개질기의 경우 $600^{\circ}C$의 상압에서 수증기/탄화수소 비율이 2.6일 때, 연료전지의 경우 작동온도가 190~20$0^{\circ}C$일 때 연료전지의 출력이 최대값을 나타내었으며, 단위전지의 전기화학적 효율은 약 45%, 수소이용률은 약 61%, 발전시스템 전체의 효율은 18%이었다.
Park, Jaekwan;Kim, TaekKyu;Seong, SeungHwan;Koo, SeoRyong
Annual Conference of KIPS
/
2022.11a
/
pp.667-669
/
2022
최근 고도화 되고 있는 인공지능 기술은 복잡한 데이터 속에서 내재된 인사이트를 발견하여 상태 변화를 진단하고 예측하는데 활용되고 있다. 이러한 첨단 기술을 활용하여, 원자력 발전소에서 공정상태가 비정상 또는 비상 상태로 악화되기 전에 운전원이 인지할 수 있다면 공정상태를 정상으로 회복하는데 도움을 줄 수 있다. 이 논문에서는 공정상태 판단을 위한 딥러닝 모델을 활용하는 지능형 조기 경고 개념을 제안한다. 공정상태의 변화 추세를 예측하는 목적으로 사용하는 지능형 조기 경고는 기존 경보 보다 단순화된 상태 천이 메커니즘을 사용하여 운전원의 부담이 증가하지 않도록 한다. 또한, 사고 시나리오 데이터로 딥러닝 모델로 학습하고 지능형 조기 경고 화면을 구현하여 운전원을 지원하기 위한 구현방향을 제시한다.
Due to the unique recipes and processes of each company, not only differences among the results of dyeing textile materials exist but they are also difficult to predict. This study attempted to develop a color prediction model based on deep learning to optimize color realization in the dyeing process. For this purpose, deep learning-based models such as multilayer perceptron, CNN and LSTM models were selected. Three forecasting models were trained by collecting a total of 376 data sets. The three predictive models were compared and analyzed using the cross-validation method. The mean of the CMC (2:1) color difference for the prediction results of the LSTM model was found to be the best.
Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
Journal of Korea Water Resources Association
/
v.55
no.spc1
/
pp.1283-1293
/
2022
The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.
Kim, Eun-Young;Yon, Sung-Yean;Kim, Byun-Whan;Kim, Jeong
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2010.06a
/
pp.206-206
/
2010
본 연구에서는 신경망을 이용하여 SiN 박막의 특성을 예측하는 모델을 개발하였다. 신경망으로는 일반화된 회귀 신경망 (generalized regression neural network-GRNN)을 이용하였고, GRNN 모델의 예측수행은 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 최적화 하였다. 개발된 모델을 이용하여 증착률과 굴절률 및 균일도를 공정변수의 함수로 예측하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.