• Title/Summary/Keyword: 공정분할

Search Result 197, Processing Time 0.024 seconds

Low-Power 4th-Order Band-Pass Gm-C Filter for Implantable Cardiac Pacemaker (이식형 심장 박동 조절 장치용 저 전력 4차 대역통과 Gm-C 필터)

  • Lim, Seung-Hyun;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • Low power consumption is crucial for medical implantable devices. A low-power 4th-order band-pass Gm-C filter with distributed gain stage for the sensing stage of the implantable cardiac pacemaker is proposed. For the implementation of large-time constants, a floating-gate operational transconductance amplifier with current division is employed. Experimental results for the filter have shown a SFDR of 50 dB. The power consumption is below $1.8{\mu}W$, the power supply is 1.5 V, and the core area is $2.4\;mm{\times}1.3\;mm$. The filter was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Analysis of Delay-Bandwidth Normalization Characteristic in Decay Usage Algorithm of UNIX (UNIX의 Decay Usage 알고리즘에서의 지연시간-사용량 정규화 특성 분석)

  • Park, Kyeong-Ho;Hwang, Ho-Young;Lee, Chang-Gun;Min, Sang-Lyul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.511-520
    • /
    • 2007
  • Decay usage scheduling algorithm gives preference to processes that have consumed little CPU in the recent past. It has been widely-used in time-sharing systems such as UNIX, where CPU-intensive processes and interactive processes are mixed. However, there has been no sound understanding about the mixed effects of decay usage parameters on the service performance. This paper empirically analyzes their effects in terms of the resulting service bandwidth and delay Based on such empirical analysis, we derive the clear meaning of each parameter. Such analysis and understanding provides a basis of controlling decay usage parameters for desirable service provision as required by applications.

CMOS Integrated Capacitive Fingerprint Sensor with Pixel-level Auto Calibration Circuit (픽셀단위 자동보상회로가 적용된 용량형 지문센서의 CMOS구현)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.65-71
    • /
    • 2007
  • We propose a pixel-level automatic calibration circuit scheme that initializes a capacitive fingerprint sensor LSI to eliminate the influence of the surface condition and environment, which is degraded by dirt during long-time use, process variation and ambient temperature. The sample chip is fabricated on $0.35{\mu}m$ standard CMOS process. The calibration is executed by optimizing the reference voltage in each pixel to make the sensor signals of all pixels the same. The calibration control circuit is composed of the sensing circuit and charge pumping circuit, and calibrates all pixels in a short time. 16-level gray scale fingerprint images can be captured to increase the accuracy of identification. This confirms that the scheme is effective for capturing consistent clear images during long-time use.

Multiple-Output Low Drop-Out Regulator With Constant Feedback Factor (고정 피드백 인자를 사용하는 다중출력 LDO 레귤레이터)

  • Mo, Hyunsun;Kim, Daejeong
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.384-392
    • /
    • 2018
  • A multiple-output LDO regulator is a good choice in terms of the efficiency in embedded systems requiring various supply voltages. A small feedback factor in LDO incurs the long settling time, resulting in large ripples in the time-multiplexing strategy. A new proposed topology enhances the settling time, and hence the ripples by incorporating the constant feedback factor with different reference voltages. The simulation results of a prototype design in a standard $0.35{\mu}m$ CMOS process verify that the proposed strategy enhances the settling time and ripple characteristic by more than doubled than a conventional circuit using the feedback factor of less than 0.4.

Implementation of 2,048-bit RSA Based on RNS(Residue Number Systems) (RNS(Residue Number Systems) 기반의 2,048 비트 RSA 설계)

  • 권택원;최준림
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.57-66
    • /
    • 2004
  • This paper proposes the design of a 2,048-bit RSA based on RNS(residue number systems) Montgomery modular multiplier As the systems that RNS processes a fast parallel modular multiplication for a large word partitioned into small words, we introduce Montgomery reduction method(MRM)[1]based on Wallace tree modular multiplier and 33 RNS bases with 64-bit size for RNS Montgomery modular multiplication in this paper. Also, for fast RNS modular multiplication, a modified method based on Chinese remainder theorem(CRT)[2] is presented. We have verified 2,048-bit RSA based on RNS using Samsung 0.35${\mu}{\textrm}{m}$ technology and the 2,048-bit RSA is performed in 2.54㎳ at 100MHz.

Three-Dimensional Finite Element Analysis for Hollow Section Extrusion of the Underframe of a Railroad Vehicle Using Mismatching Refinement with Domain Decomposition (영역분할에 의한 격자세분화기법을 사용한 철도차량 마루부재 압출공정의 3차원 유한요소해석)

  • Park, K.;Lee, Y.K.;Yang, D.Y.;Lee, D.H.
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.362-371
    • /
    • 2000
  • In order to reduce weight of a high-speed railroad vehicle, the main body has been manufactured by hollow section extrusion using aluminum alloys. A porthole die has utilized for the hollow section extrusion process, which causes complicated die geometry and flow characteristics. Design of porthole die is very difficult due to such a complexity. The three-dimensional finite element analysis for hollow section is also an arduous job from the viewpoint of appropriate mesh construction and tremendous computation time. In the present work, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented for the analysis of the hollow section extrusion process. In addition, a modified grid-based approach with the surface element layer is utilized lot three-dimensional mesh generation of a complicated shape with hexahedral elements. The effects of porthole design are discussed through the simulation for extrusion of an underframe part of a railroad vehicle. An experiment has also been carried out for the comparison. Comparing the velocity distribution at the outlet with the thickness variation of the extruded part, it is concluded that the analysis results can provide reliable measures whether the die design is acceptable to obtain uniform part thickness. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF

Epoxide Hydrolase-catalyzed Hydrolytic Kinetic Resolution for the Production of Chiral Epoxides (에폭사이드 가수분해효소에 의한 동력학적 가수분해반응을 이용한 광학활성 에폭사이드 생산)

  • 이은열
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.321-325
    • /
    • 2002
  • Chiral epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are newly discovered enzymes and versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-Prepare catalysts. In this Paper, recent progresses in biochemistry and molecular biology of EH and developments of novel reaction systems are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides.

Design of Soft X-ray Tube and Simulation of Electron Beam by Using an Electromagnetic Finite Element Method for Elimination of Static Electric Field (전자기 유한요소법 전자빔 시뮬레이션을 이용한 정전기장 제거용 연한 X-선관 설계 특성 연구)

  • Park, Tae-Young;Lee, Sang-Suk;Park, Rae-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.66-69
    • /
    • 2014
  • The spreading tube of X-ray cathode tube displayed with an electromagnetic finite element method was designed. To analyze a feature design and the concrete coordinate performance of soft X-ray tube modeling, the orbit of electron beam was simulated by OPERA-3D SW program. The fixed conditions were the applied voltage, the temperature, the work function of thermal electron between cathode and anode of tungsten. Through the analysis of distribution of electron beam and the variation of dividing region, the design of soft X-ray spreading tube equipped with two cross filaments was optimized.

SoC including 2M-byte on-chip SRAM and analog circuits for Miniaturization and low power consumption (소형화와 저전력화를 위해 2M-byte on-chip SRAM과 아날로그 회로를 포함하는 SoC)

  • Park, Sung Hoon;Kim, Ju Eon;Baek, Joon Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.260-263
    • /
    • 2017
  • Based on several CPU cores, an SoC including ADCs, DC-DC converter and 2M-byte SRAM is proposed in this paper. The CPU core consists of a 12-bit MENSA, a 32-bit Symmetric multi-core processor, as well as 16-bit CDSP. To eliminate the external SDRAM memory, internal 2M-byte SRAM is implemented. Because the SRAM normally occupies huge area, the parasitic components reduce the speed of SoC. In this work, the SRAM blocks are divided into small pieces to reduce the parasitic components. The proposed SoC is developed in a standard 55nm CMOS process and the speed of SoC is 200MHz.

Molecular Engineering of Epoxide Hydrolases for Production of Enantiopure Epoxides (분자공학 기반의 광학활성 에폭사이드 제조용 epoxide hydrolase 생촉매 개발)

  • Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.168-174
    • /
    • 2006
  • Enantiopure epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of enantiopure epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-prepare catalysts. In this paper, recent progresses In molecular engineering of EHs are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of enantiopure epoxides.