• Title/Summary/Keyword: 공력영향성

Search Result 85, Processing Time 0.027 seconds

A study on establishing the aerodynamic database though the external flow method of a rotating vehicle (회전 운동하는 비행체의 외부 유동장 해석을 통한 공력데이터베이스 구축 연구)

  • Kang, Tae-Woo;Ahn, Jong-Moo;Lee, Hee-Rang;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.41-47
    • /
    • 2017
  • With the introduction of new technologies, ground weapons have led to the development of artificial intelligence and the attention of major developed countries. In this study, CFD was performed through the BLU-103 model to obtain aerodynamic data for aircraft that are subjected to rotational motion. To simulate the steady-state of a rotating body, the body was fixed and the principle of rotating the body by rotating the surrounding air was used. In order to examine the aerodynamic feasibility of the rotating aircraft, the analysis was carried out at intervals of $30^{\circ}$ angle from $0^{\circ}$ to $90^{\circ}$ for the simple shape and the side slip angle. It was confirmed that the drag coefficient for the simple model satisfies the quantitative results of 1.0 ~ 1.2 through CD presented in "Drag Book". The aerodynamic data was constructed by applying the valid input verified through the simple type analysis conditions to the actual shape, and the tendency was analyzed. The analysis confirmed that CX, CZ and CY increase not only in the simple model but also in the rotation of the actual model. Especially, the influence of CZ was judged to have contributed to the flight.

A Study on the Effect of Air Humidity on the Performance of Gas Turbine Engine (가스터빈 엔진 성능에 습도가 미치는 영향 고찰)

  • 남삼식;전용민;양인영;김춘택;양수석;이대성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.24-24
    • /
    • 2002
  • 가스터빈 엔진의 공력 성능은 작동 유체인 공기의 물성 변화에 대하여 민감하게 반응하는데, 대기 중에 수증기 형태로 함유되어 있는 수분이 공기의 물성 변화를 야기하는 대표적인 요인이다. 건공기와는 다른 화학적 조성을 가지는 습한 공기가 가스터빈 엔진에 유입되면 엔진의 작동과 성능에 2가지 방법(공기 흡입 도관에서의 응축 그리고 엔진 전체 사이클에 걸친 가스 조성 변화 야기)으로 영향을 미친다. 절대 습도가 높은 지상 조건의 무더운 날에는 습공기 유입으로 인한 가스터빈 엔진의 성능 저하가 두드러지며 지상에서의 고공환경시험에서는 시험 당일의 습도 조건에 따라 성능의 차이를 보인다. 해상에서 운용되는 비행체 추진기관으로 사용되는 가스터빈의 경우 특히 높은 습도 환경에서 작동하므로 습도 보정을 통하여 엔진의 정확한 성능과 운용성을 파악하는 것은 중요하다.

  • PDF

Slotted flap을 부착한 WIG선에서의 수치해석 및 진동 저감을 위한 플랩 형상 최적설계

  • Baek, Seung-Chan;Yang, Ji-Hye
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.541-547
    • /
    • 2016
  • 본 연구에서는 Slotted flap을 장착한 WIG선(Wing In Ground effect ship)에서 발생하는 진동을 최소화하기 위해 WIG선의 공력특성을 수치적으로 분석하고 그에 따라 플랩 형상에 대하여 최적화를 진행하였다. 주 익형에 대한 형상은 NACA 4412로 고정한 상태에서 플랩의 각도와 x, y좌표를 설계변수로 설정하였으며, 그에 따라 설정한 평균 $C_L$값을 유지하면서 진동의 진폭 크기가 작아지도록 제한 조건 및 목적 함수를 설정하였다. 최적화된 익형에서 플랩과 주 익형 사이에서 분출되는 유체는 코안다 효과의 영향을 받아 플랩 윗부분을 타고 흐른다. 이로 인해 진동에 결정적인 영향을 미치는 박리영역이 억제되었으며, 진동이 최소화 되었다. 결론적으로 플랩의 최적화를 통하여 기본 설계 익형에서 89%의 진동이 저감되는 것과 동시에 Lift/Drag 96.2로 기본 설계 익형에 비해 4.1배 향상되었다.

  • PDF

Thickness and Loading Noise from Helicopter Rotor at various Pitch Angles (피치각 변화에 따른 헬리콥터 로터에서의 두께 및 하중소음 방사)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.868-874
    • /
    • 2007
  • Noises from the helicopter rotor model are calculated numerically at various pitch angles. The aerodynamic data are calculated by using prescribed wake model and unsteady panel method. The distribution of aerodynamic loads on the blade surface are obtained from $0^{\circ}$ to $9^{\circ}$ pitch angles with equiangular increments of $1.5^{\circ}$. Although thickness noise is not related to the change of pitch angles, loading noise level increases about 3~4dBA every $1.5^{\circ}$ increment of pitch angle. The additive noise level shows sufficient value to perceive the loudness. From the result of directivity pattern the sound level at the lower region of the blade disc plane is higher than that of the upper region.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design (항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용)

  • 전상욱;이동호;전용희;김정화
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.24-32
    • /
    • 2006
  • Using a deterministic design optimization, the effect of uncertainty can result in violation of constraints and deterioration of performances. For this reason, design optimization is required to guarantee reliability for constraints and ensure robustness for an objective function under uncertainty. Therefore, this study drew Monte Carlo Simulation(MCS) for the evaluation of reliability and robustness, and selected an artificial neural network as an approximate model that is suitable for MCS. Applying to the aero-structural optimization problem of aircraft wing, we can explore robuster optima satisfying the sigma level of reliability than the baseline.

Comparison and Validation Study on Computational Fluid Dynamics and Wind Tunnel Test Results of Standard Dynamics Model (표준 동안정 모델의 전산유체해석 및 풍동시험 결과 비교검증)

  • Cho, Donghyurn;Kim, Seung Pil;An, Eunhye;Choi, Younseok;Roh, Jisoo;Chung, Hyoung Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.217-225
    • /
    • 2017
  • This research represents comparison and validation of static aerodynamic results in different wind tunnel organizations and EFD-CFD results. KAFA conducted wind tunnel tests with Standard Dynamics Model(SDM) which is based on the NRC model, the same configuration of KARI; and then compared and analyzed similarities and differences of the data from KARI and NRC results for verifying the accuracy of wind tunnel tests. Also, We compared the result of CFD with that of wind tunnel tests and examined strakes effect in static characteristics which are attached on the forward fuselage of SDM for investigating the cause of some discrepancies. From this analysis, there are some discrepancies in Cm tendency between EFD-CFD and it did not show the big difference of aerodynamic characteristics by strake effects. Thus, we need to research additionally for analyzing the different cause of some discrepancies such as vortex structures by the rear strut or intake of SDM and regenerating grid resolution of CFD.

Aerodynamic Characteristics of WIG Effect Vehicle with Direct Underside Pressurization (DUP (Direct Underside Pressurization)을 가진 위그선의 공력특성에 관한 연구)

  • Lee, Ju-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.655-663
    • /
    • 2010
  • DUP (direct underside pressurization) is a device that can considerably increase lift, reduce take-off speed and minimize hump drag when a WIG effect vehicle takes off on the water surface. A 3-dimensional numerical investigation of a WIG effect vehicle with DUP is performed to analyze aerodynamic characteristics and the static height stability. The model vehicle, named Aircat, consists of a propeller in the middle of a fuselage, an air chamber under the fuselage, Lippisch-type wings and a large horizontal T-tail. The lift is mainly increased by the stagnation of the accelerated air coming into the air chamber through the channel in the middle of the fuselage. However, the accelerated air increases drag as well as reduces static height stability.

Flying-Wing Type UAV Design Optimization for Flight Stability Enhancement (전익기형 무인기의 비행 안정성 향상을 위한 형상 최적화 연구)

  • Seong, Dong-gyu;Juliawan, Nadhie;Tyan, Maxim;Kim, Sanho;Lee, Jae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.809-819
    • /
    • 2020
  • In this study, the twist angle and wing planform shapes were selected as design variables and optimized to secure the stability of the flying-wing type UAV. Flying-wing aircraft has no separated fuselage and tails, which has advantages in aerodynamic characteristics and stealth performance, but it is difficult to secure the flight stability. In this paper, the sweep back angle and twist angle were optimized to obtain the lateral stability, the static margin and wing planform shapes were optimized to improve the longitudinal stability of the flying-wing, then effect of the twist angle was confirmed by comparing the stability of the shape with the winglet and the shape with the twist angle. In the optimization formulation, focusing on improving stability, constraints were established, objective functions and design variables were set, then design variable sensitivity analysis was performed using the Sobol method. AVL was used for aerodynamic analysis and stability analysis, and SQP was used for optimization. The CFD analysis of the optimized shape and the simulation of the dynamic stability proved that the twist angle can be applied to the improvement of the lateral stability as well as the stealth performance in the flying-wing instead of the winglet.

Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine Blades (터보펌프 터빈 블레이드 형상 요소의 구조적 영향)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Structural effects of several geometric parameters such as shroud thickness, edge roundness and fillet radius of turbopump turbine blade were investigated throughout transient finite element analyses. Usually shroud is inserted to increase aerodynamic efficiency, but blocks deformation of blades. Therefore it can increase stress level in a structural point of view. Likewise, edge roundness and fillet between blades are also parameters where aerodynamics and structural mechanics should compromise. In this study, overall stress levels according to the geometric parameters were thoroughly investigated and the results could be utilized to determine optimal geometries.