DOI QR코드

DOI QR Code

Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design

항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용

  • Published : 2006.08.31

Abstract

Using a deterministic design optimization, the effect of uncertainty can result in violation of constraints and deterioration of performances. For this reason, design optimization is required to guarantee reliability for constraints and ensure robustness for an objective function under uncertainty. Therefore, this study drew Monte Carlo Simulation(MCS) for the evaluation of reliability and robustness, and selected an artificial neural network as an approximate model that is suitable for MCS. Applying to the aero-structural optimization problem of aircraft wing, we can explore robuster optima satisfying the sigma level of reliability than the baseline.

결정론적인 최적 설계 방법을 이용하는 경우 불확실성의 영향으로 인하여 제약조건의 위반이나 목표 성능의 저하를 초래할 수 있다. 이러한 까닭에 불확실성하에서 제약 조건에 대한 신뢰성을 보장하고 목적함수의 강건성을 확보하는 설계가 필요하다. 그러므로 본 연구에서는 강건성과 신뢰성을 평가하기 위하여 Monte Carlo Simulation(MCS)을 이용하였으며, 계산 효율의 증가를 위하여 MCS에 적합한 근사모델을 선정하는 과정을 거쳐 신경망 모델을 채택하게 되었다. 이를 공력-구조가 연동된 항공기 날개 설계 문제에 적용하여 봄으로써 그 가능성을 타진하였다. 불확실성을 고려한 최적 설계를 수행한 결과 요구되는 신뢰도 수준을 만족시키면서 baseline보다 강건한 최적해를 탐색하는 것이 가능하였다.

Keywords

References

  1. Du, X. and Chen, W., 'Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design', Optimization and Engineering, Vol. 6, No.1, 2005, pp. 63-84 https://doi.org/10.1023/B:OPTE.0000048537.35387.fa
  2. DeLaurcntis. D. A. and Mavris, D. N., 'Uncertainty Modeling and Management in Multidisciplinary Analysis and Synthesis', Proceedings of 38th AIAA Aerospace Science Meeting and Exhibit, 2000
  3. Crooternan, F. P., 'Advanced Stochastic Method for Probabilistic Analysis', Netherlands National Aerospace Laboratory Report, NRL- TP -99398, 1999
  4. Hasofer. A. M. and Lind, N. C., 'An Exact and Invariant First-Order Reliability Format', ASCE Journal of Eng. Mech., Vol. 100, No.1, 1974, pp. 111-121
  5. Rackwitz, R. and Fiessler, B., 'Structural Reliability under Combined Random Load Sequences', Computers and Structures, Vol. 9, 1978, pp. 489-494 https://doi.org/10.1016/0045-7949(78)90046-9
  6. Liu, P. L. and Der Kiureghian, A. 'Optimization Algorithms for Structural Reliability', Com. Prob. Mechanics, ADM-93, ASME, 1988, pp. 185-196
  7. Youn, B. D., Choi, K. K. and Park, Y. H., 'Hybrid Analysis Method for Reliability-Based Design Optimization', Journal of Mechanical Design, Vol. 125, No.2, 2003, pp. 221-232 https://doi.org/10.1115/1.1561042
  8. Youn, B., Choi, K. and Yi, K., 'Performance Moment Integration (PMI) Method for Quality Assessment in Reliability-Based Robust Design Optimization', Mechanics Based Design of Structures & Machines, Vol. 33, Issue 2, 2005, pp. 185-213 https://doi.org/10.1081/SME-200067066
  9. Tu, J. and Choi, K. K., 'A New Study on Reliability-Based Design Optimization', Journal of Mechanical Design, Vol. 121, No.4, 1999, pp. 557-564 https://doi.org/10.1115/1.2829499
  10. Putko, M. M., Newman, P. A., Taylor, A. C. III and Green, L. L., 'Approach for Uncertainty Propagation and Robust Design in CFD using Sensitivity Derivatives', Journal of Fluids Engineering, Vol. 124, No.1, 2002, pp. 60-69
  11. Taguchi, G., 'Taguchi on Robust Technology Development', ASME Press, New York, 1993
  12. Phadke, M. S., 'Quality Engineering using Robust Design', Prentice Hall, Englewood Cliffs, New Jersey, 1989, pp. 6-11
  13. d'Entrernont, K. and Ragsdell, K. M., 'Design for Latitude using TOPT', In Advances in Design Automation, ASME, New York, Vol. 14, 1988, pp. 265-272
  14. Chen, W., Allen, J. K., Tsui, K. L. and Mistree, F., 'A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors', Journal of Mechanical Design, Vol. 118, No.4, 1996, pp. 478-485 https://doi.org/10.1115/1.2826915
  15. Sundaresan, S., Ishii, K. and Houser, D. P., 'A Robust Optimization Procedure with Variations on Design Variables and Constraints', Advances in Design Automation, ASME DE-Vol. 69-1, 1993, pp. 379-386
  16. Mavris, D. V., Bandte, O. and DeLaurentis, D. A., 'Robust Design Simulation: A Probabilistic Approach to Multidisciplinary Design', Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 298-397 https://doi.org/10.2514/2.2437
  17. Koch, P. N., Simpson, T. W., Allen, J. K. and Mistree F., 'Statistical Approximation for Multidisciplinary Design Optimization: The Problem of Size', Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 275-286 https://doi.org/10.2514/2.2435
  18. Du, X. and Chen, W., 'Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design', AIAA Journal, Vol. 40, No.3, 2002, pp. 545-552 https://doi.org/10.2514/2.1681
  19. Jung, D. and Lee, B., 'Development of an Efficient Optimization Technique for Robust Design by Approximating Probability Constraints', KSME journal A, Vol. 24, No. 12, 2000, pp. 3053-3060
  20. Hwang, K. and Park, G., 'A New Information Index of Axiomatic Design for Robustness', KSME journal A, Vol. 26, No. 10, 2002, pp. 2073-2081 https://doi.org/10.3795/KSME-A.2002.26.10.2073
  21. Chen, W., Tsui, K. L., Allen J. K. and Mistree, F., 'Integration of Response Surface Method with the Compromise Decision Support Problem in Developing a General Robust Design Procedure', Advances in Design Automation, ASME DE-Vol. 82-2, 1995, pp. 485-492
  22. Mavris, D. N., Bandte, O. and Schrage, D. P., 'Economic Uncertainty Assessment of an HSCT using a Combined Design of Experiments/ Monte Carlo Simulation Approach', 17th Annual Conference of the International Society of Parametric Analysis, San Diego, CA, June, 1995
  23. Myers, R. H. and Montgomery, D. C., 'Response Surface Methodology: Process and Product Optimization using Designed Experiments', John Wiley & Sons, Inc., 1995
  24. Giunta, A A, 'Aircraft Multidisciplinary Design Optimization using Design of Experiment Theory and Response Surface Modeling Methods', PhD thesis, Virginia Polytechnic Institute and State University, 1997
  25. Simpson, T. W., 'A Concept Exploration Method for Product Family Design', PhD thesis, Georgia Institute of Technology, 1998
  26. Freeman, J. A and Skapura, D. M., 'Neural Networks Algorithm, Programming Techniques', Publishing Company, 1992
  27. Kim, Y. Chim, Y., Lee, D. and Lee, D., 'Application of Neural Network to Approximate design space', KSAS spring annual meeting, 2002
  28. Giunta, A. A. and Watson, T. L., 'A Comparison of Approximation Modeling Techniques: Polynomial versus Interpolating Models', Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, AIAA-98-4758, 1998
  29. Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F., 'Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization', Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization, AIAA-98-4755, 1998
  30. Jin, R., Chen, W. and Simpson, T. W., 'Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria', Proceedings of the 8th AIAA/USAF /NASA/ISSMO Multidisciplinary Analysis & Optimization Symposium, AIAA-2000-4801, 2000
  31. Ku, Y., Jeon, Y., Kim, Y. and Lee, D., 'Feasibility Improvement of Design Space Using Response Surface and Kriging Method', KSAS spring annual meeting, 2004
  32. Jeon, Y., Jun, S., Rho, J., Kim, J., Kim, J. and Lee, D., 'A Study on Approximation Techniques for the Multidisciplinary Optimization', KSAS spring annual meeting, 2005
  33. Yoon, S., Ahn, J., and Lee, D., 'Multidisciplinary Optimal Design of a Transport Wing Configuration', KSAS Journal, Vol. 27, No.6, 1999, pp. 128-138

Cited by

  1. Robust Design Optimization of Unmanned Aerial Vehicle Coaxial Rotor Considering Operational Uncertainty vol.48, pp.2, 2011, https://doi.org/10.2514/1.C001016
  2. Optimum nose shape of a front-rear symmetric train for the reduction of the total aerodynamic drag vol.27, pp.12, 2013, https://doi.org/10.1007/s12206-013-0918-9
  3. Reliability-based design optimization of axial compressor using uncertainty model for stall margin vol.25, pp.3, 2011, https://doi.org/10.1007/s12206-011-0103-y