• Title/Summary/Keyword: 공력분석

Search Result 305, Processing Time 0.021 seconds

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

Analysis of the Aerodynamic Characteristics of 'Buhwal' Airplane (부활호의 공력 특성 해석)

  • Noh, Kuk-Hyeon;Cho, Hwan-Kee;Cheong, Seong-Gee;Cho, Tae-Hwan;Kim, Byung-Soo;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.882-887
    • /
    • 2012
  • This paper describes on the aerodynamic characteristics of the first domestically manufactured aircraft, Buhwalho, in Korea. The computational fluid dynamics(CFD) calculations and wind tunnel test were utilized to investigate the basic aerodynamic characteristics of aircraft with control surface deflections and attitude changes. Variations of lift, drag and pitching moment due to angles of attack and control surface deflections were analyzed and also flight stability due to side force, yawing and rolling moments caused by the change of sideslip angles, rudder and aileron deflections were discussed. Through this study, the meaningful aerodynamic data by CFD calculations and wind tunnel tests were obtained and the flight characteristics based on these data were confirmed accordingly by the flight tests.

Numerical Investigation of Aerodynamic Characteristics of a Ducted Fan-Vane Configuration and Improvement of Control Performance in Hover (덕트 팬-베인 형상의 제자리 비행 공력 특성 및 조종 성능 개선에 관한 수치적 연구)

  • Kang, Dong Hun;Yim, Jinwoo;You, Heung-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • In the present study, numerical simulation was performed to investigate aerodynamic characteristics of a ducted fan-upper/lower vanes system in hover. Sensitivity analysis of aerodynamic forces for a system component was conducted with the deflection angle of upper vanes varying but at the constant rotational speed and the collective pitch angle of fan blades. Then, vane control performance and duct airload distributions were analyzed in detail to physically understand operating mechanisms of individual vane and interference effect between duct and vanes. Finally, new control concept of operating upper vanes has been proposed to improve the control performance of the full configuration. It is found that the side force and rolling moment of upper vanes increase linearly with the variation of those deflection angle; however, the total side force is significantly small due to the reaction force acted on the duct. It is also found that upper vanes close to the duct contraction side have a key role in changing vane control forces. It is revealed that the duct suction pressure is induced by the interaction with the suction side of upper vanes, while duct pressure recovery by the interaction with the pressure side, leading to increase in duct asymmetric force. When four upper vanes are kept in situ at 0° deflection angle or removed, the total control performance was improved with duct asymmetric force reduced and the total magnitude of roll remarkably increasing up to 80%.

A Study on Aerodynamic Analysis and Starting Simulation for Horizontal Axis Wind Turbine Blade (수평축 풍력발전용 회전날개의 공력성능 해석 및 시동특성 모사에 관한 연구)

  • 공창덕;방조혁;김학봉
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.40-46
    • /
    • 1999
  • Aerodynamic performance and starting characteristic of wind turbine blade are important factors that determine the whole system as rated power, operating method, etc. Therefore, starting characteristic according to aerodynamic performance, wind speed and blade pitch angle should be examined while wind turbine blade is designed. In this study, the aerodynamic analysis program of 750㎾ class horizontal axis wind turbine blade was developed and to certify this program, the aerodynamic performance of the commercialized blade was analyzed with it. The analysis result was corresponding to the value presented from manufacturer. And the starting analysis program was developed on the basis of the developed aerodynamic analysis program and starting analysis was performed. As a result, it was confirmed that variable speed operation and variable pitch control are profitable to wind turbine used in low wind speed as our country.

  • PDF

Analysis of Aerodynamic Efficiencies of Fighter Aircraft in Close Formation Flight Using a Panel Method (패널법을 사용한 근접 편대비행 전투기 공력효율성 분석)

  • Kim, Jaemuk;Han, Cheolhuei
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2021
  • 편대비행 항공기들은 선행항공기에서 발생시킨 후류의 영향으로 후행항공기의 공력효율이 증가하는 것으로 잘 알려져 있다. 비점성 비회전 유동장에 관한 연속방정식을 지배방정식으로 사용하는 패널법은 비교적 빠른 시간 이내에 항공기의 공력특성 변화를 계산할 수 있는 장점이 있다. 본 연구에서는 편대비행 항공기들 사이의 항공기들 사이의 흐름방향 거리는 스팬길이의 2.5배로 위치시키고, 수평상대거리는 스팬길이의 -0.4~0.3배로, 수직상대거리는 스팬길이의 -0.25, -0.15.0.15.0.25배로 변화시키며 계산을 수행했다. 연구결과 선행항공기와 후행항공기의 수평상대거리 변화의 경우 주날개들이 안쪽으로 겹침이 발생하고, 수직 상대거리가 가까울수록 더 큰 공력성능 향상을 얻을 수 있었다. 편대비행 하는 후행항공기의 공력성능 향상은 선행 항공기로부터 발생한 익단 와류의 올려흐름 영향에 기인한 것이다. 선행항공기로부터 발생한 익단와류는 후행항공기의 모멘트 특성을 변화시켜 비행안정성에 영향을 미치게 된다. 향후 연구에서는 선행항공기로부터 발생한 와의 영향이 후행항공기의 모멘트 특성에 미치는 영향을 연구 할 것이다.

A Study on Aerodynamic Damping and Aeroelastic Instability of Helical-shaped Super Tall Building (나선형 초고층건물의 공력불안정 진동과 공력감쇠에 관한 연구)

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio;Yi, Jin-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.95-103
    • /
    • 2016
  • In this paper, aeroelastic instability and aerodynamic damping ratio of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and crosswind responses on a super tall building was investigated by an aeroelastic model test, and the aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement Technique. Aerodynamic damping ratios evaluated in this study were verified through comparison with previous results obtained by quasi-steady theory. As a result, the aeroelastic instability of the helical $180^{\circ}$ model in crosswind direction were not occurred for any conditions with increasing the reduced wind velocity while the square model generally encounters aeroinstability due to the vortex shedding. The aerodynamic damping in along-wind direction for the helical $180^{\circ}$ and the square model increased monotonically both with reduced wind velocity, i.e., there is no relation with modifications of building shapes. On the other hand, in crosswind direction, the characteristics of aerodynamic damping ratio with reduced wind velocity for helical $180^{\circ}$ model were quit different from those of the square model.

Aerodynamic analysis of flow type and angle of attack around a NACA0012 airfoil (NACA0012 Airfoil의 받음각과 유동형태에 따른 공력특성 분석)

  • Yun, Jeong-No;Yang, Seung-Deok;Jo, Tae-Hyeon;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.53-56
    • /
    • 2012
  • 항공기에 작용하는 공기역학적 힘인 양력과 항력은 항공기 날개 설계에서 성능을 좌우하는 성능지수로 주로 이용된다. 본 연구에서는 NACA0012 airfoil 모델의 공력특성을 EDISON 열유체 시뮬레이션 프로그램(이하 EDISON)을 이용해 분석하고 검증해 보았다. 아음속 유동의 특정 조건에서 받음각과 유동형태에 따른 공력특성 분석을 수행하여 받음각에 따라 변하는 양력계수, 항력계수, 양항비, 실속각과 천음속 유동 조건에 맞추어진 마하수 0.5~1.22 영역에서 변하는 항력계수를 기존 데이터와 비교 검증했다.

  • PDF

An Experimental Study for Construction of Static Aerodynamics Database of KF-16 based on Design of Experiments (KF-16의 DOE기반 정적 공력 데이터베이스 구축을 위한 실험적 연구)

  • Jin, Hyeon;Shim, Ho-Joon;Lee, Don-Goo;Ahn, Jae-Myung;Choi, Han-Lim;Oh, Se-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.422-431
    • /
    • 2015
  • Wind tunnel testing to construct static aerodynamic database of KF-16 was conducted for preceding research of design of experiments in wind tunnel testing. The test model is KF-16 scaled 1/33 and it has horizontal tail, flaperon, and rudder. The experiments consist of one experiment for analyzing aerodynamic coefficients under whether or not horizontal tail is present and four experiments for analyzing aerodynamic coefficients of changes of deflection angle in control surface which are flap, flaperon, rudder, and horizontal tail. After conducting wind tunnel testing, the experimental results show that the control surface changes have a great effect on Aerodynamic characteristics.

Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information (물리적 구배 정보를 이용한 공력계수 모형화를 위한 GE 크리깅의 적용)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • The six-DOF aerodynamic coefficients of a missile entail inherent physical gradient constraints originated from the geometric characteristics of a cylindrical fuselage. To effectively adopt the freely available gradient information in aerodynamic coefficients modeling, this research employed gradient-enhanced (GE) Gaussian process. To investigate the accuracy of aerodynamic coefficients predicted with gradients information, we compared two Gaussian-process-based models: ordinary and GE Gaussian process models with and without gradient information, respectively. As a result, we found that GE Gaussian process models were able to comply with imposed gradient information and more accurate than ordinary Gaussian process models. However, we also found that GE Gaussian process modeling cannot handle gradient information continuously and ends up with more samples due to additional gradient information.

Design of Instrumented Pod for Flight Aeroacoustic Environment (비행 공력음향 환경 측정을 위한 계측포드 설계)

  • Jun, Oo-Chul;Kim, Sang-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.536-541
    • /
    • 2012
  • An instrumented pod has been developed to measure the aeroacoustic environment as well as the conventional data such as load, vibration, and aerodynamic heating of fighters during flight tests, confirming to the recently developed external pod design for fighters. This study presents the development of the measurement system in detail, being the first indigenous effort in its kind. The pod was designed to meet the requirements of the MIL-HDBK-1763 and MIL-STD-810 Method 515, which are the base to determine the locations and range of sensors. The Endevco 8510B-2 was selected as the sensor to withstand the harsh environment during the flight tests. In order to assess the integrity of the fabricated pod design, a ground run-up test of a KF-16 has been conducted with the pod installed at Station 5. The test results show that the system works well but the sound level exceeds the predetermined sensor range. The sensor range has been readjusted for flight test performed later.