• 제목/요약/키워드: 공기윤활

검색결과 113건 처리시간 0.023초

회전 구동용 헤드 슬라이더의 부상높이에 관한 연구 (A Study on Flying Height of Head Slider in Rotary Type Actuator)

  • 이재헌;최동훈;윤상준;김광식
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1886-1896
    • /
    • 1991
  • 본 연구에서는 부상높이를 예측할 수 있는 방법을 개발하고 연관된 변수들의 변동에 따른 부상높이를 검토함으로써 불안정한 극소 공기막 형성시 유발되는 자기헤 드와 하드 디스크간 정보손실 및 하드 디스크의 표면손상을 막고 고성능 자기기억장치 설계에 도움이 되고자 한다.

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

미끄럼 유동을 고려한 초소형 공기 베어링의 정특성 (Static Characteristics of Micro Gas-Lubricated proceeding Bearings with a Slip Flow)

  • 곽현덕;이용복;김창호;이남수;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.137-142
    • /
    • 2002
  • The fluid mechanics and operating conditions of gas-lubricated proceeding bearings in micro rotating machinery such as micro polarization modulator and micro gas turbine are different from their larger size ones. Due to non-continuum effects, there is a slip of gas at the walls. Thus in this paper, the slip flow effect is considered to estimate the pressure distribution and load-carrying capacity of micro gas-lubricated proceeding bearings as the local Knudsen number at the minimum film thickness is greater than 0.01. Based on the compressible Reynolds equation with slip flow, the static characteristics of micro gas-lubricated proceeding bearings are obtained. Numerical predictions compare the pressure distribution and load capacity considering slip flow with the performance of micro proceeding bearings without slip f]ow for a range of bearing numbers and eccentricities. The results clearly show that the slip flow effect on the static characteristics is considerable and becomes more significant as temperature increases.

  • PDF

이중범프포일 공기베어링의 성능해석 (Performance Analysis of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제23권3호
    • /
    • pp.123-129
    • /
    • 2007
  • This paper presents a theoretical model for the analysis of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. In the case of a lightly loaded condition where only the upper bump contributes to deformation, the double bump is in the single active region. In the case of a heavily loaded condition where both the upper and lower bumps contribute to deformation, the double bump is in the double active region. So the double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석 (Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept)

  • 이성호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

고속 공기 포일 베어링의 정적${\cdot}$동적 특성에 관한 실험적 연구 (An Experimental Study on the Static and Dynamic Characteristics of High Speed Air Foil Bearings)

  • 조준현;이용복;김창호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.186-194
    • /
    • 2004
  • Experiments were conducted to determine the structural static and dynamic characteristics of air foil bearings. The housing of the bearing on the journal was driven by an impact hammer which was used to simulate dynamic forces acting on the bump loll with various leading condition. Two different bump foils (Cu-coated bump and viscoelastic bump) were tested and the static and dynamic coefficients of two bump foils compared, based on the experimental measurements for a wide range of operating conditions. The static and dynamic characteristics of air foil bearings were extracted 0rpm the frequency response function by least square method and IV(Instrumental Variable) method. The experiment was tested at 0rpm and $10,000\~16,000rpm$, and loaded on $50\~150N$. From the test results, the possibility of the application of high load and high speed condition is suggested.

  • PDF

Mist를 이용한 저공해 연삭 가공기술 개발 (Development of Low Pollution Grinding Technology using Mist)

  • 최헌종;이석우;김대중;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.793-797
    • /
    • 2000
  • The environmental problems by using coolant demanded the new cooling methods. As one of them the studies on the dry grinding with compressed cold air have been done. The cooling method using compressed cold air was effdve thmugh going down the temperature of compressed air supplied below $-25^{\circ}C$ and inneasing the amount of mmpresd cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using MQL(Minimum Quantity Lubrication) or mist newly were suggested. These two methods can satisfy both cooling effect and lubrication with only small amount of coolant, also has the benefit in the point of decreasing the envimnmental pollution. This paper focused on analyzing the grindmg characteristics of the cooling method using mid. The generated heat and grinding force of the cooling method using mist were compared with them of coolant and compressed cold air. And them grinding test according to the temperature of compressed cold air, mist spray amount and mist supply direction were done.

  • PDF

냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가 (Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method)

  • 황인옥;권동희;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

수중 및 공기 중에서의 지르칼로이-4 튜브마멸 비교분석 (Comparison and Analysis of Zircaloy-4 Tube Wear in Air and Water Environment)

  • 김형규;박순종;강흥석;윤경호;송기남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.19-26
    • /
    • 2001
  • The wear characteristic of Zircaloy-4 tube, which is used for a cladding of light water reactor fuel rod, is investigated experimentally. The experiment is conducted with contacting the crossed tube specimens in air as well as in water at room temperature with various combination of contact normal force and sliding distance of reciprocating motion. The contour and the volume of each wear are examined to study the effect of contact condition and environment on wear. As a result, it is found that the wear volume in the water environment is larger than that in the air for all the contact (i.e., force and sliding distance) conditions. However, the wear depth is greater in air than in water if the contact normal force and the sliding distance are larger. These are explained by the ease of detachment of wear particles from the contact surface. On the other hand, workrate model is applied with the contact shear force range measured by our wear tester. Investigated is the correlation between the workrate and the wear volume increase rate of the present experiment. The parabolic curve is found to fit well for the present wear data.

  • PDF

첨가제에 의한 PTFE 복합재료의 마찰마모 특성에 관한 연구 (A Study on the Effects of Additives on the Friction and Wear Properties of PTFE Composite)

  • 김용직;김윤해
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.11-18
    • /
    • 2000
  • 본 연구는 공기압축기에 적용되는 피스턴링의 재료에 자기윤활성 재료를 이용할 경우 어떠한 마찰마모 특성을 나타내는가를 비교평가 함으로써 실제 적용여부의 가능성을 확인하였으며, 주요 결과로는 동을 중량비 30% 함유한 시험편이 평균마찰계수 및 비마모량이 가장 적었다. 이는 마찰계수에 직접적인 영향을 주는 마모유동막이 조기에 다량 생성될 경우 낮은 마찰계수와 함께 안정화 효과에 큰 영향을 주며 비마모량은 발생된 마모유동막의 경도와 비례하고 용융마모에 의해 덩어리 형태로 탈락되는 마모분이 가장 적기 때문이라고 생각된다.

  • PDF