• Title/Summary/Keyword: 공극 규모

Search Result 64, Processing Time 0.025 seconds

Development and Application of Micromodel for Visualization of Supercritical CO2 Migration in Pore-scale (공극 규모에서의 초임계상 이산화탄소 거동 가시화를 위한 마이크로모델의 개발과 적용)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2015
  • Despite significant effects on macroscopic migration and distribution of CO2 injected during geological sequestration, only limited information is available on wettability in microscopic scCO2-brine-mineral systems due to difficulties in pore-scale observation. In this study, a micromodel had been developed to improve our understanding of how scCO2 flooding and residual characteristics of porewater are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of glass beads and glass plates) in a pressurized chamber provided the opportunity to visualize scCO2 spreading and porewater displacement. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through an imaging system. Measurement of contact angles of residual porewater in micromodels were conducted to estimate wettability in a scCO2-water-glass bead system. The measurement revealed that the brine-3M NaCl solution-is a wetting fluid and the surface of glass beads is water-wet. It is also found that the contact angle at equilibrium decreases as the pressure decreases, whereas it increases as the salinity increases. Such changes in wettability may significantly affect the patterns of scCO2 migration and porewater residence during the process of CO2 injection into a saline aquifer at high pressures.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

Relationships between Texture and Physical Properties of Jurassic Unagsan and Cretaceous Sogrisan Granites (쥬라기 운악산 및 백악기 속리산 화강암류의 조직과 물성과의 관계)

  • Yun Hyun-Soo;Park Deok-Won;Hong Sei-Sun;Kim Ju-Yong;Yang Dong-Yoon;Chang Soobum
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.169-184
    • /
    • 2005
  • Unagsan and Sogrisan granites are widely distributed in the northern Gyeonggi massif and middle Ogcheon belt, respectively, and they show different petrologic characteristics as follows. The former has compact textures and light grey colors, and the latter has spotted miarolitic textures and pink colors. Most of the samples selected for tests are fresh and coarse-grained. And bored core samples were prepared so that they are vertical to the rift plane. The results of modal analysis show that Unagsan granite has significantly higher quartz and plagioclase contents (Qz+Pl) than Sogrisan granite. In contrast, alkali feldspar content (Af) of Sogrisan granite is much higher than that of Unagsan granite. Therefore, it is believed that the light grey colors of Unagsan granite are due to relatively high Qz+Pl, and the pink colors of Sogrisan granite are caused by higher Af. Fractures in Sogrisan granite have strongly perpendicular strike patterns and more dip values close to vertical compared with the fractures in Unagsan granite. Results of the fracture pattern analysis suggest that the Sogrisan granite has better potential to produce dimension stones than the Unagsan granite. However, miarolitic textures often found in the Sogrisan granite may be one of the factors reducing the granite quality. The Unagsan and Sogrisan granites have similar specific gravity values of 2.60 and 2.57, respectively. Absorption ratios and porosity values of Sogrisan granite are higher than those of Unagsan granite, and they shows linearly positive correlations. Compressive and tensile strengths of the Unagsan granite are generally higher than those of Sogrisan granite. These differences and variation trends found in physical properties of Unagsan and Sogrisan granite can be explained by the differences in the textures of Unagsan and Sogrisan granites, namely compact and miarolitic textures respectively. For Unagsan granite, compressive and tensile strengths are negatively correlated with porosity but for Sogrisan granite no specific correlations are found. This is probably due to the irregular dispersion patterns of miarolitic textures formed during the later stages of magmatic processes. Contrary to the trends found in absorption ratios, both granites have similar values of abrasive hardness, which can be explained by higher Qz+Af of the Sogrisan granite than those of the Unagsan granite and that quartz and alkali feldspar have relatively larger hardness values. For Sogrisan granite, compressive strength shows slightly positive correlations with Qz+Af+Pl and negative correlations with biotite and accessory mineral contents (Bt+Ac).

Preliminary Hydrological Design for Sand Dam Installation at the Valley of Seosang-ri, Chuncheon (춘천 서상리 계곡부 샌드댐 설치를 위한 수문학적 예비 설계)

  • Chung, Il-Moon;Lee, Jeongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.725-733
    • /
    • 2019
  • Sand dams are structures that can be used as auxiliary water resources in case of drought as sand accumulates due to barriers crossing valley rivers and valley water is stored in the voids, increasing the water level. This structure, which is mainly used in arid regions such as Africa, has not been installed in Korea. In Korea, there are only a few cases where water is taken from debris barriers that prevent debris flow. The purpose of this study is to evaluate the effect of water supply when the sand dam is installed downstream of the existing intake barrier in Seosang-ri valley, Chuncheon. For this purpose, modeling was performed by linking the basin hydrologic model and reservoir routing model. Changes in the water level, storage and discharge in the sand dam reservoir according to the size and intake of the sand dam are presented on a case-by-case basis. As a result of application, it was found that the water supply capacity due to the sand dam installation was improved at 95% reliability. Especially, when the size is L × B × Ho = 25 m × 15 m × 1 m and the pumping rates from intake barrier and sand dam are (Q1, Q2) = (30, 20), (35, 15) ㎥/day, the efficiency was the best for water supply of 50 ㎥/day.

Numerical Analysis for Fault Reactivation during Gas Hydrate Production (가스하이드레이트 개발과정에서의 단층 재활성화 해석)

  • Kim, Hyung-Mok;Kim, A-Ram
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.59-67
    • /
    • 2016
  • In this paper, we perform a numerical analysis to evaluate the potential of fault reactivation during gas production from hydrate bearing sediments and the moment magnitude of induced seismicity. For the numerical analysis, sequential coupling of TOUGH+Hydrate and FLAC3D was used and the change in effective stress and consequent geomechanical deformation including fault reactivation was simulated by assuming that Mohr-Coulomb shear resistance criterion is valid. From the test production simulation of 30 days, we showed that pore pressure reduction as well as effective stress change hardly induces the fault reactivation in the vicinity of a production well. We also investigated the influence of stress state conditions to a fault reactivation, and showed that normal fault stress regime, where vertical stress is relatively greater than horizontal, may have the largest potential for the reactivation. We tested one simulation that earthquake can be induced during gas production and calculated the moment magnitude of the seismicity. Our calculation presented that all the magnitudes from the calculation were negative values, which indicates that induced earthquakes can be grouped into micro-seismic and as small as hardly perceived by human beings. However, it should be noted that the current simulation was carried out using the highly simplified geometric model and assumptions such that the further simulations for a scheduled test production and commercial scale production considering complex geometric conditions may produce different results.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Characteristics of Petroleum Geology of the Marine Basins in North Korea and Mutual Cooperative Plans for MT (Marine Technology) (북한 해양분지의 석유지질학적인 특징과 남북한 해양과학기술 협력 방안)

  • Huh, Sik;Yoo, Hai-Soo;Kwon, Suk-Jae;Oh, Wee-Yeong;Pae, Seong-Hwan
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • The possibility of oil reserve has been conformed because the oil has been produced by 450 barrel per day in the West Korea Bay basin of the North Korea. There is also possibility of giant oil reserve since it is geographically close to one of the biggest oil fields of Bohai Basin, China. Based on the on-going oil exploration and the present condition of investment, the areas of ongoing oil exploration are three: West Korea Bay B&C prospect explored by Swedish Taurus, the north of West Korea Bay and Anju basin explored by Canadian SOCO, and East Korea Bay explored by Australian Beach Petroleum. However, there is little or no possibility of oil reserve in the rest sea areas of three. Even though oil reserves were discovered in the some parts of land areas such as Kilju and Myungcheon, it was presumed to have no economical efficiency. Geology in West Korea Bay off the North Korea is similar to that in Bohai Bay off China. The basement consists of thick carbonate rock of the Late Proterozoic and Early Paleozoic overlain by Mesozoic ($6,000{\sim}10,000\;m$) and Cenozoic ($4,000{\sim}5,000\;m$) units. Source rocks are Jurassic black shale (3,000 m or more), Cretaceous black shale ($1,000{\sim}2,000\;m$), and pre-Mesozoic carbonates (several thousand meters). Reservoir rocks are Mesozoic-Cenozoic sandstone with high porosity and pre-Mesozoic fractured carbonate rocks. Petroleum raps are of the anticline, fault sealed, buried hill, and stratigraphic types. It absolutely needs to take up a positive attitude, the activation of ocean science and technology exchange, and the joint research and development of modern MT (Marine Technology) considering the state of establishing new international ocean order forcing on building up 200 nautical mile EEZ (exclusive economic zone) among coastal nations. Both South and North Koreas should extend the ocean jurisdiction and contiguity, and MT development dealing with the same sea areas. It is more urgent problem to find a way to have the North Korea participated in, and then to develop ocean management and ocean industry individually.

  • PDF

Fracture Network Analysis of Groundwater Folw in the Vicinity of a Large Cavern (분리열극개념을 이용한 지하공동주변의 지하수유동해석)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.125-148
    • /
    • 1993
  • Groundwater flow in fractured rock masses is controlled by combined effects of fracture networks, state of geostafic stresses and crossflow between fractures and rock matrix. Furthermore the scaie dependent, anisotropic properties of hydraulic parameters results mainly from irregular paftems of fracture system, which can not be evaluated properly with the methods available at present. The basic assumpfion of discrete fracture network model is that groundwater flows only along discrete fractures and the flow paths in rock mass are determined by geometric paftems of interconnected fractures. The characteristics of fracture distribution in space and fracture hydraulic parameters are represented as the probability density functions by stochastic simulation. The discrete fracture network modelling was aftempted to characterize the groundwater flow in the vicinity of existing large cavems located in Wonjeong-ri, Poseung-myon, Pyeungtaek-kun. The fracture data of $1\textrm{km}^2$ area were analysed. The result indicates that the fracture sets evaluated from an equal area projection can be grouped into 6 sets and the fracture sizes are distributed in longnormal. The conductive fracture density of set 1 shows the highest density of 0.37. The groundwater inflow into a carvem was calculated as 29ton/day with the fracture transmissivity of $10^{-8}\textrm{m}^2/s$. When the fracture transmissivity increases in an order, the inflow amount estimated increases dramatically as much as fold, i.e 651 ton/day. One of the great advantages of this model is a forward modelling which can provide a thinking tool for site characterization and allow to handle the quantitative data as well as qualitative data.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.