DOI QR코드

DOI QR Code

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition

지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구

  • Park, Jinyoung (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 박진영 (한국지질자원연구원 석유해저연구본부) ;
  • 이민희 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2013.03.07
  • Accepted : 2013.06.20
  • Published : 2013.06.28

Abstract

Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

국내 이산화탄소 지중저장 후보지인 포항분지의 심부 대수층 구성하고 있는 사암과 이암을 대상으로 초임계$CO_2$ 반응에 의한 암석의 지화학적/광물학적 풍화를 규명하는 실험을 실시하였다. 고압셀 장치를 사용하여 실험실 규모의 $CO_2$ 지중저장 조건을 모사하였으며, 시추한 포항분지 암석이 미고결 상태임을 감안하여 암석시료는 입자상으로 분쇄하여 시료 30 g과 지하수 100 ml를 고압셀(200 ml 용량)에 넣고 100 bar, $50^{\circ}C$ 조건에서 총 60일 동안 반응시켜, 초임계$CO_2$ 주입 시 포항분지 심부 사암층과 이암층 내에서 발생하는 초임계$CO_2$-암석-지하수반응을 재현하였다. 반응 후 10일, 30일, 60일 간격으로 시료를 회수하여 암석의 지화학적 풍화 정도를 정량화하기 위한 XRD(X-Ray Diffractometer), BET(Brunauer-Emmett-Teller) 분석을 실시하였고, 암석 슬랩($15mm{\times}40mm{\times}5mm$)을 같은 지중 조건에서 반응시켜 반응시간에 따른 지하수시료의 용존 이온 농도 변화를 ICP/OES로 분석하였다. XRD 분석결과, 초임계$CO_2$-암석-지하수반응에 의해 사암과 이암을 구성하는 광물 중 사장석과 정장석(기질의 장석류 포함)의 비율이 가장 크게 감소한 것으로 나타났다. 사암의 경우 점토광물인 일라이트, 스멕타이트, 황철석 비율이 증가하였으며, 이암의 경우 일라이트, 카오리나이트, 칼슘을 함유한 불소인회석 비율이 증가하였다. 반응시간에 따른 지하수 이온 농도 분석결과, 사암과 이암에서 방해석과 장석류의 용해가 가장 활발히 일어나 지하수 내 $Ca^{2+}$, $Na^+$농도가 증가하였다. $K^+$, $Si^{4+}$, $Mg^{2+}$ 같은 이온들의 농도는 반응시간 동안 증가와 감소를 반복하였는데, 이는 암석의 용해와 2차 광물의 침전이 함께 일어나고 있음을 의미한다. 사암과 이암 입자의 비표면적은 반응 60일 후까지 각각 $27.3m^2/g$$19.6m^2/g$에서 $28.6m^2/g$$26.6m^2/g$으로 증가하였으며, 미세공극의 평균 크기는 각각 $72.6{\AA}$, $96.7{\AA}$에서 $68.4{\AA}$$75.8{\AA}$으로 지속적으로 감소하여, 초임계$CO_2$-암석-지하수반응에 의해 입자 표면이 용해되면서 미세 공극들이 추가로 형성되어 비표면적이 증가하는 것으로 나타났다. 본 연구를 통하여 포항분지 사암에 $CO_2$를 지중 주입하는 경우, 암석의 용해 및 침전반응에 의한 대상암석의 물성변화가 지중저장의 효율성과 안정성에 큰 영향을 미칠 수 있다는 것을 입증하였다.

Keywords

References

  1. Bachu, S., Gunter, W.D. and Perkins, E.H. (1995) Aquifer disposal of $CO_2$-hydrodynamic and mineral trapping. Energy Conversion and Management, v.35, p.269-279.
  2. Bae, E.J., Lee, J.J., Kim, Y.H., Choi, K.H. and Yi, J.H. (2009) Sample Preparation and Analysis of Physico-Chemical Properties for Safety Assessment of Manufactured Nanomaterials. J. of the Korean Society for Environmental Analysis, v.12, n.2, p.59-73.
  3. Chae, G.T., Yun, S.T., Choi, B.Y., Kim, K.J. and Shevalier. M. (2005) Geochemical Concept and Technical Development of Geological $CO_2$ Sequestration for Reduction of $CO_2$. Econ. Environ. Geol., v.38, n.1, p.1-22.
  4. Chae, K.S., Lee, S.P., Yoon, S.W. and Matsuoka, T. (2010) Trends of Underground $CO_2$ Storage Technology for the Large scale Reduction of GHG. Journal of Korean Society for Rock Mechanics, v.20, n.5, p.309-317.
  5. Chiaramonte, L., Zoback, M., Friedmann, J., Stamp, V. and Zahm, C. (2011) Fracture Characterization and Fluid Flow Simulation with Geomechanical Constraints for a $CO_2$-EOR and Sequestration Project Teapot Dome Oil Field, Wyoming, USA. Energy Procedia, v.4, p.3973-3980. https://doi.org/10.1016/j.egypro.2011.02.337
  6. Choi, B.Y., Chae, G.T., Kim, K.H., Koh, Y.K. and Yun, S.T. (2009) Application of conceptual reactive transport modelint to geologic $CO_2$ sequestration. Journal of the Geological Society of Korea, v.45, n.1, p.55-67.
  7. Darwish, N.A. and Hilal, N. (2010) A simple model for the prediction of $CO_2$ solubility in H20-NaCl system at geological sequestration conditions. Desalination, v.260, p.114-118. https://doi.org/10.1016/j.desal.2010.04.056
  8. Egawa, K., Hong, S.K., Lee, H.J., Choi, T.J., Lee, M.K., Kang, J.G., Yoo, K.C., Kim, J.C., Lee, Y.I., Kihm, J.H. and Kim, J.M. (2009) Preliminary evaluation of geological storage capacity of $CO_2$ in sandstones of the Sindong Group, Gyeongsang Basin(Cretaceous). J. Geol. Soc. Kor., v.45, p.463-472.
  9. Faure, G. (1998) Principles and applications of geochemistry: A comprehensive textbook for geology students 2 nd edition, Prentice Hall, 600p.
  10. Forster, A., Schoner, R., Forster, H.J., Norden, B., Blaschke, A.W., Luckert, J., Beutler, G., Gaupp, R. and Rhede, D. (2010) Reservoir characterization of a $CO_2$ storage aquifer: The Upper Triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology, v.27, p.2156-2172. https://doi.org/10.1016/j.marpetgeo.2010.07.010
  11. Gaus, I. (2010) Role and impact of $CO_2$-rock interactions during $CO_2$ storage in sedimentary rocks. International Journal of Greenhouse Gas Control, v.4, p.73-89. https://doi.org/10.1016/j.ijggc.2009.09.015
  12. Gunter, W.D., Perkins, E.H. and McCann, T.J. (1993) Aquifer disposal of $CO_2$-rich gases, reaction design for added capacity. Energy Conversion and Management, v.34, p.941-948. https://doi.org/10.1016/0196-8904(93)90040-H
  13. Huh, C., Kang, S.G. and Ju, H.H. (2011) Consideration of Carbon dioxide Capture and Geological Storage (CCS) as Clean Development Mechanism (CDM) Project Activities: Key Issues Related with Geological Storage and Response Strategies. Journal of the Korean Society for Marine Environmental Engineering, v.14, n.1, p.51-64. https://doi.org/10.7846/JKOSMEE.2011.14.1.051
  14. IEA (International Energy Agency) (2010) Energy Technology Perspectives 2010: Scenarios and Strategies to 2050, OECD (Organization for Economic Cooperation and Development)/ IEA, Paris, France.
  15. IPCC, 2005, Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press.
  16. IWR (International Economic Platform for Renewable Energies) (2012) Climate: Global $CO_2$ emissions rise to new record level in 2011, press on Renewable Energy Industry, Germany. http:/./www.cerina.org/co2-2011.
  17. Kang, H., Baek, K., Wang, S., Park, J., Lee, M. (2012) Study on the dissolution of sandstones in Gyeongsang basin and the calculation of their dissolution coefficients under $CO_2$ injection condition. Econ. Environ. Geol., v.45, n.6, p.661-672. https://doi.org/10.9719/EEG.2012.45.6.661
  18. Kim, G.H., Kim, J.H., Kim, S.S., Park, D.B. and Lee, Y.I. (1998) Study of Petroleum geology of Pohang basin, Korea. Korean Jour. of Petrol. Geol., 5th Proceedings, p.48-55.
  19. Koschel, D., Coxam, J-Y., Rodier, L. and Majer, V. (2006) Enthalpy and solubility data of $CO_2$ in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilibria, v.247, p.107-120. https://doi.org/10.1016/j.fluid.2006.06.006
  20. Kwon Y.K. (2011) Secure of Geological Formations of $CO_2$ storage : A Suggestion of Methodology through case stouy. 1st Korea CCS Conference.
  21. Lee, B.J. and Song, K.Y. (1995) Interpretation of geologic structure in Tertiary Pohang basin, Korea. Econ. Environ. Geol., v.28, n.1, p.69-77.
  22. Liu, F., Lu, P., Griffith, C., Hedges, S.W., Soong, Y., Hellevang, H., Zhu, C. (2012) $CO_2$-brine-caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control, v.7, p.153-167. https://doi.org/10.1016/j.ijggc.2012.01.012
  23. Lu, J., Kordi, M., Hovorka. S.D., Meckel, T.A. and Christopher, C.A. (2012) Reservoir characterization and complications for trapping mechanisms at Cranfield $CO_2$ injection site. Greenhouse Gas Control, In Press, Corrected Proof.
  24. Medina, C.R., Rupp, J.A. and Barnes, D.A. (2011) Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer. International Journal of Greenhouse Gas Control, v.5, p.146-156. https://doi.org/10.1016/j.ijggc.2010.03.001
  25. Noh, H.J., Huh, C. and Kang, S.G. (2012) Analysis of Modality and Procedures for CCS as CDM Project and Its Countmeasures. Journal of the Korean Society for Marine Environmental Engineering, v.15, n.3, p.263-272. https://doi.org/10.7846/JKOSMEE.2012.15.3.263
  26. Ortoleva, P.J., Dove, P. and Richter, F. (1998) Geochemical perspective on $CO_2$ sequestration. U.S. Department of Energy Workshop on 'Terrestrial Sequestration of $CO_2$-An assessment of Research Needs', Gaithersburg, MD, May 10-12.
  27. Park, Y.C., Huh, D.G., Yoo, D.G., Hwang, S.H., Lee, H.Y. and Roh, E. (2009) A review of business model for $CO_2$ geological storage project in Korea. Journal of Korean Society for Geosystem Engineering, v.45, p.381-393.
  28. Park, K.G., Hwang, S.H., Lee, C.H., Park, I.H. and Park, Y.C. (2011) Site Investigation of Pilot Scale $CO_2$ Sequestration by Instance of Seismic Reflection Method in Pohang, Korea. 1st Korea CCS Conference.
  29. Preston, C., Monea, M., Jazrawi, W., Brown, K., Whittaker, S., White, D., Law, D., Chalaturnyk, R. and Rostron, B. (2005) IEA GHG Weyburn $CO_2$ monitoring and storage project. Fuel processing Technology, v.86, p.1547-1568. https://doi.org/10.1016/j.fuproc.2005.01.019
  30. Son, M. (1998) Formation and Evolution of the Tertiary Miocene Basins in southeastern Korea: Structural and Paleomagnetic Approaches. Ph.D. Thesis, Pusan National University, Pusan, korea, p.233(In korean with English abstract)
  31. Strazisar, B.R., Wells, A.W., Diehl, J.R., Hammack, R.W. and Veloski, G.A. (2009) Near-surface monitoring for the ZERT shallow $CO_2$ injection project. Greenhouse Gas Control, v.3, p.736-744. https://doi.org/10.1016/j.ijggc.2009.07.005
  32. Wang, S.K., Lee, Y.I., Kim, H.J. and Lee, M.H. (2008) Characterization and evaluation of geologic formations for geological sequestration of carbon dioxide. Report of Carbon Dioxide Reduction & Sequestration R&D.
  33. Xu, T., Apps, J.A. and Pruess, K. (2004) Numerical simulation of $CO_2$ disposal by mineral trapping in deep aquifers, Applied Geochemistry, v.19, p.917-936. https://doi.org/10.1016/j.apgeochem.2003.11.003
  34. Yoon, S. (2010) Tectonic History of the Tertiary Yangnam and Pohang Basins, Korea. Journal of th Geological Society of Korea, v.46, n.2, p.95-110.
  35. Zhang, L., Wang, S., Zhang, L., Ren, S. and Guo, Q. (2009) Assessment of $CO_2$ EOR and its geo-storage potential in mature oil reservoirs, Shengli Oilfield, China. Petroleum Exploration and Development, v.36, p.737-742. https://doi.org/10.1016/S1876-3804(10)60006-7

Cited by

  1. Geochemical Reactive Experimental and Modeling Studies on Caprock in the Pohang Basin vol.49, pp.5, 2016, https://doi.org/10.9719/EEG.2016.49.5.371
  2. An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 vol.26, pp.3, 2016, https://doi.org/10.7474/TUS.2016.26.3.181
  3. Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System vol.47, pp.4, 2014, https://doi.org/10.9719/EEG.2014.47.4.421
  4. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage vol.39, pp.1, 2017, https://doi.org/10.1007/s10653-016-9813-5